簡易檢索 / 詳目顯示

研究生: 林尚緯
Shang-Wei Lin
論文名稱: 粗骨材粒徑大小及撓曲鋼筋量對貫穿剪力強度之影響
Effect of Coarse Aggregate Size and Flexural Reinforcement Ratio on Punching Shear Capacity
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
陳正誠
Cheng-Cheng Chen
邱建國
Chien-kuo Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 136
中文關鍵詞: 版柱接合部貫穿剪力拉力撓曲鋼筋比粗骨材粒徑
外文關鍵詞: slab-column connections, punching shear, flexural reinforcement ratio, coarse aggregate size
相關次數: 點閱:151下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於現行規範 ACI318-19(ACI Committee 318, 2019)在計算版柱接合部之貫穿
剪力,所提供貫穿剪力強度模型過於簡化,過去不少文獻顯示計算貫穿剪力時必須
考量更多設計參數。本研究將透過大型結構實驗來釐清(1)骨材粒徑大小、與(2)樓
版拉力撓曲鋼筋比對接合部貫穿剪力之影響。

本研究總共設計與測試 12 座實尺寸內部版柱試體,實驗以單向垂直載重方式
進行測試,設計參數分別為:(1)拉力撓曲鋼筋比,分別為0.45%、0.6%、0.9%及
1.5%;(2)最大骨材粒徑大小,分別為1 in.(25mm)、0.5 in.(13mm)與純砂漿。所有
試體之版與柱尺寸相同,版厚均為10 in.(250mm)。實驗結果顯示所有試體破壞模
式均由貫穿剪力主控,試體貫穿剪力強度隨著撓曲鋼筋比的增加而有明顯提升,
ACI318-19、Eurocdoe 2、與FIB 貫穿剪力模型對於撓曲鋼筋比少於0.8%之試體均
不夠保守;骨材粒徑大小對撓曲鋼筋量高於0.8%之試體貫穿剪力提升較為顯著,
ACI318-19、Eurocdoe2、與FIB 貫穿剪力模型對於使用純砂漿之試體貫穿剪力強度
評估皆不夠保守;此外,經由實驗發現剪力強度與撓曲強度比Vc/Vflex 增加對接合
部變形能力有幫助,但儘管試體Vc/Vflex 達1.77 仍無法避免貫穿剪力破壞。


Several existing studies indicate that the punching shear capacity estimated as per ACI318-19(ACI Committee 318, 2019) appears to be overly simplified without
considering some key design parameter. For clarification, a test program is conducted in this study in order to evaluate the influence of (1) size of coarse aggregate size, and (2) amount of slab tensile flexural reinforcement on punching shear capacity.

The test program consisted of a total of 12 large-scale interior slab-column
subasseblages. All specimens were tested under monotonically increase gravity type loading. Test parameters include: (1) tensile flexural reinforcement ratio, 0.45%, 0.6%, 0.9% and 1.5% respectively; and (2) the maximum aggregate size, 1 in.(25mm), 0.5 in.(13mm) and cement mortars. Test results indicate that punching shear controls the failure mode of all test specimens. Connection punching shear capacity increases as the tensile flexural reinforcement increases. The strength models per ACI 318-19, Eurocode 2, and FIB all underestimate specimen peak strength when the connection tensile flexural reinforcement ratio is less than 0.8%. The increase of aggregate size enhances the connection punching shear capacity more apparently when the connection tensile flexural reinforcement ratio is greater than 0.8%. The strength models per ACI 318-19, Eurocode 2, and FIB are not conservative for specimens using cement mortars. In additional, it is found that connection deformation capacity increases as the strength ratio between shear and flexural, Vc/Vflex, increases. However, punching shear failure cannot be prevented even when the specimen is designed with Vc/Vflex up to 1.77.

摘要 I Abstract II 目錄 III 表索引 V 圖索引 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究方法 3 1.4 研究內容構架 3 第二章 文獻探討 5 2.1 規範探討 5 2.1.1 ACI 318-19貫穿剪力行為的發展 5 2.1.2 Eurocode 2(2004) 6 2.1.3 FIB Model Code 2010 7 2.2 拉力撓曲鋼筋對剪力強度之影響 9 2.2.1 Guandalini et al.(2009) 9 2.2.2 Dam et al.(2017) 11 2.2.3 Teng et al.(2018) 14 2.3 骨材粒徑大小對剪力強度之影響 16 2.3.1 Bazant and Sun et al.(1987) 16 2.3.2 Sherwood et al.(2007) 17 2.3.3 Deng et al.(2017) 22 第三章 試體規劃 25 3.1 試體設計 25 3.2 試體製作 35 3.2.1 試體模板及鋼筋組立 35 3.2.2 混凝土過篩 37 3.2.3 試體灌漿 39 3.3 實驗配置 45 3.3 試體量測系統配置 51 3.3.1 應變計 51 3.3.2 光學量測系統 58 3.3.3 位移計 60 3.3.4 荷重計 62 3.3.5 資料擷取器(HBM) 62 3.4 測試方式及步驟 63 第四章 實驗結果分析 65 4.1 材料試驗結果 65 4.1.1 鋼筋拉伸試驗 65 4.1.2 混凝土坍度及抗壓試驗 68 4.2 試體測試過程 73 4.3 試體裂縫 78 4.3.1 拉力側表面裂縫 78 4.3.2 剖面裂縫 85 4.4 試體結果分析 93 4.4.1力量位移曲線 93 4.4.2 強度 97 4.4.3 變形轉角分析 99 第五章 結論與建議 107 參考文獻 109 附錄A:應變計量測值 113

ACI Committee 318, 1977, “Building Code Requirements for Reinforced Concrete(ACI 318-77).”, American Concrete Institute, Detroit, MI, 103 pp.

ACI Committee 318, 1989, “Building Code Requirements for Reinforced Concrete(ACI 318-83) and Commentary(ACI 318R-89).”, American Concrete Institue, Detroit, MI, 353 pp.

ACI Committee 318, 2005, “Building Code Requirements for Structural Concrete(ACI 318-05) and Commentary(318R-05),” American ConcreteInstitute, Farmington Hills, Mich., 430 pp.

ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete(ACI 318-14) and Commentary(ACI 318R-14).”, American Concrete Institute, Farmington Hills, MI., 519 pp.

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete and Commentary(ACI318-19),” American Concrete Institute, Farmington Hills, Michigan, 623 pp.

ASTM C109, 2002, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars(Using 2-in. or [50 mm] Cube Specimens)”, American Standard Test Method, West Conshohocken, 6 pp.

Bazant, Z. P., Sun, H. H., 1987, “Size Effect in Diagonal Shear Failure: Influence of Aggregate Size and Stirrups.”, ACI Materials Journal, V. 84, No.4, pp. 259-272. 

Dam, T. X., Wight, J. K., and Parra-Montesinos, G. J., 2017, “Behavior of Monotonically Loaded Slab-Column Connections Reinforced with Shear Studs.”, ACI Strucural Journal, V. 114, No.1, pp. 221-232.

Deng, Q., Yi, W. J., and Tang, F. J., 2017, “Effect of Coarse Aggregate Size on Shear Behavior of Beams without Shear Reinforcement.”, ACI Structural Journal, V. 114, No.5, pp. 1131-1142.

European Committee for Standardization 2004, “Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings.” European Standard, Brussels, 225 pp.

Giduquio, M. B., 2016, “Punching Shear Strength and Deformation Capacity of Corner Slab-Column Connection.”, Doctoral Thesis, National Taiwan University of Science and Technology, 221 pp.

Guandalini, S., Burdet, O. L., and Muttoni, A., 2009, “Punching Tests of Slabs with Low Reinforcement Ratios.”, ACI Strucural Journal, V. 106, No.1, pp. 87-95.
International Federation for Structural Concrete, 2010, “fib Model Code for Concrete Structures.”, International Federation for Structural Concrete, Lausanne, Switzerland, 402 pp.

Joint ACI-ASCE Committee 326, 1962, “Shear and Diagonal Tension.”, American Concrete Institute, Detroit, MI, 124pp.

Joint ACI-ASCE Committee 426, 1974, “The Shear Strength of Reinforced Concrete Members — Slabs.”, Proceedings, ASCE, V. 100, No. ST8, August, pp. 1543-1591.

Moe, J., 1961, “Shearing Strength of Reinforced Concrete Slabs and Footing under Concentrated Loads.”, Development Department Bulletin D47, Research and Development Laboratories, Portland Cement Association, April, Skokie, IL, 130 pp.

Muttoni, A., 2008, “Punching Shear Strength of Reinforced Concrete Slabswithout Transverse Reinforcement.”, ACI Structural Journal, V. 105, No. 4, pp. 440-450.

Sherwood, E. G., Bentz, E. C., and Collins, M. P., 2007, “Effect of Aggregate Size on Beam-Shear Strength of Thick Slabs.”, ACI Structural Journal, V. 104, No.2, pp. 180-183.

Sozen, M. A., and Siess, C. P., 1963, “Investigation of Multi-Panel Reinforced Concrete Floor Slabs: Design Methods — Their Evolution and Comparison.”, Journal of the American Concrete Institute, Proceedings, V. 60, No. 8, August, pp. 999-1028.

Teng, S., Chanthabouala, K., Lim, D. T. Y., and Hidayat, R., 2018, “Punching Shear Strength of Slabs and Influence of Low Reinforcement Ratio.”, ACI Structural Journal, V. 115, No.1, pp 139-150.

劉張仕杰,2019年。「支承於CFT柱無梁版之貫穿剪力強度」,碩士論文,國立台灣科技大學,103頁。

QR CODE