簡易檢索 / 詳目顯示

研究生: 李湘慈
Xiang-Tzu Lee
論文名稱: 探討微氣泡超音波於抑制順鉑誘發NOX4基因表現並治療耳毒性
Investigating the effect of ultrasound -microbubble on inhibiting cisplatin-induced NOX4 gene expression and treating ototoxicity
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 沈哲洲
CHE-CHOU SHEN
王智弘
CHIH-HUNG WANG
施政坪
CHENG-PING SHIH
莊賀喬
HO-CHIAO CHUANG
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 順鉑煙酰胺腺嘌呤二核苷酸磷酸氧化酶4基因沉默溶菌酶微氣泡超音波活性氧
外文關鍵詞: cisplatin, nicotinamide adenine dinucleotide phosphate oxidase 4, gene silencing, lysozyme microbubble, ultrasound, reactive oxygen species
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

順鉑是治療癌症時的常見藥物,但其會有導致耳毒性的副作用。順鉑進入細胞後與水形成複合物,該複合物會阻斷 DNA 複製和轉錄並抑制DNA修復與細胞週期過程。另外順鉑也會產生過量的活性氧且能與抗氧化酶(例如:超氧化物歧化酶和過氧化氫酶)共價結合,減弱內耳抗氧化防禦能力。還原態的菸鹼醯胺腺嘌呤二核苷酸磷酸(Nicotinamide adenine dinucleotide phosphate, NADPH) 氧化酶4(NOX4)是順鉑誘導活性氧((Reactive oxygen species,ROS)產生的重要氧化酶,過去研究證實透過NOX4 siRNA轉染細胞可有效使NOX4基因沉默並且減弱順鉑造成的細胞毒性和ROS產生。本研究建立吸附NOX4 siRNA之溶菌酶微氣泡結合超音波介導技術,施打超音波造成穴蝕效應可開啟細胞膜通透度,使溶菌酶微氣泡作為藥物載體將NOX4 siRNA送入細胞,此技術除了提高轉染效率及避免NOX4 siRNA降解外,也可有效抑制NOX4基因表現與ROS產生。
首先測定順鉑對於HEI-OC1細胞的毒性並檢測順鉑誘發細胞內NOX基因表現,接著製備LyzMBs- NOX4 siRNA其濃度為1.49 ± 0.861 (×108 bubbles/mL)且NOX4 siRNA吸附率為89.25 %;並進行體外細胞實驗 (n=5),其實驗組別分別為Control (no treatment)組、CDDP(20 µM)組、單純NOX4 siRNA溶液浸泡與超音波組 (NOX4 siRNA+CDDP / NOX4 siRNA+US+CDDP)、NOX4 siRNA溶液混合溶菌酶微氣泡浸泡與超音波組 (LyzMBs+ NOX4 siRNA+CDDP / LyzMBs+ NOX4 siRNA+US+CDDP)、吸附NOX4 siRNA之溶菌酶微氣泡浸泡與超音波組(LyzMBs- NOX4 siRNA+CDDP /LyzMBs- NOX4 siRNA+US+CDDP)。
在體外試驗中,吸附NOX4 siRNA之溶菌酶微氣泡施打超音波後轉染效率提升52.79 %,相較CDDP組其抑制NOX4基因抑制效率提升124.6 %、ROS抑制效率提升75.4 %。在離體組織中,經由超音波微氣泡作用可有效抑制NOX4基因表現,治療因順鉑造成之毛細胞損傷。


Cisplatin is a common drug for treating cancers, but it has the side effect of ototoxicity. After entering into the cell, cisplatin produces a complex with water and the complex blocks DNA replication and transcription and results in the inhibition of DNA repair and cell cycle progression. In addition, cisplatin also produces excess reactive oxygen species(ROS) and can covalently bind to anti-oxidant enzymes (e.g., superoxide dismutase and catalase), weakening the antioxidant defense capacity of the inner ear. NOX4 is an important oxidase for cisplatin-induced ROS production. Past studies have confirmed that NOX4 siRNA transfected cells can effectively silence the NOX4 gene and attenuate the cytotoxicity and ROS production caused by cisplatin. This thesis aims to explore the feasibility of NOX4 siRNA-coated lysozyme microbubble combined with ultrasound for gene therapy. Then, cavitation effect caused by the application of ultrasound can increase the cell membrane permeability and confirm that the lysozyme microbubbles can be used as drugcarriers to deliver NOX4 siRNA into cells. This technology can improve the transfection efficiency and avoid the degradation of NOX4 siRNA. In addition, to improve the transfection efficiency and avoid NOX4 siRNA degradation, this technology was also inhibit used to NOX4 gene expression and ROS production.
Firstly, the toxicity of cisplatin to HEI-OC1 cells was determined and the intracellular NOX gene expression induced by cisplatin was detected. Then, LyzMBs-NOX4 siRNA was prepared at a concentration of 1.49 ± 0.861 (×108 bubbles/mL) and the adsorption rate of NOX4 siRNA was 89.25%; in the in vitro cell experiments (n=5), the experimental groups were divided into Control (no treatment) group、CDDP (cisplatin) (20 µM) group、NOX4 siRNA solution alone soaking and ultrasonic group (NOX4 siRNA+CDDP / NOX4 siRNA+US+ CDDP)、NOX4 siRNA solution mixed with LyzMBs soaking and ultrasonic group (LyzMBs+ NOX4 siRNA+CDDP / LyzMBs+ NOX4 siRNA+US+CDDP)、NOX4 siRNA adsorbed LyzMBs soaking and ultrasonic group (LyzMBs- NOX4 siRNA+CDDP/LyzMBs-NOX4 siRNA+US+CDDP).
In the in vitro test, the transfection efficiency of the LyzMBs-NOX4 siRNA group increased by 52.79 % after ultrasound treatment, compared with the CDDP group, the inhibition efficiency of NOX4 gene inhibition increased by 124.6 % and the ROS inhibition efficiency increased by 75.4 %. In the Organ of Corti explant, microbubbles combined with ultrasound can effectively inhibit the expression of NOX4 gene and reduced cochlear hair cell damage caused by cisplatin.

ABSTRACT iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xiii 第1章、緒論 1 1.1 內耳耳毒性治療 1 1.1.1順鉑導致耳毒性之藥物治療簡介 2 1.1.2順鉑導致耳毒性之基因治療簡介 (Gene therapy) 3 1.2 超音波傳輸機制 4 1.2.1 超音波簡介 (Ultrasound) 4 1.2.2 醫用超音波 (medical ultrasound) 5 1.2.3 超音波結合微氣泡於基因治療之應用 7 1.3 超音波微氣泡對比劑 7 1.3.1 穴蝕效應 (Cavitation) 8 1.3.2 穩態穴蝕效應 (Stable cavitation) 9 1.3.3 慣性穴蝕效應 (Inertial cavitation) 10 1.4 溶菌酶簡介及應用 11 1.4.1 溶菌酶 (Lysozyme) 11 1.4.2 溶菌酶微氣泡相關研究 12 1.5順鉑(CDDP)簡介及耳毒性機制 12 1.5.1順式-二氯二氨合鉑(CDDP) 12 1.5.2順鉑誘導耳蝸細胞凋亡與過氧化作用機制 13 1.6 NADPH氧化酶簡介及應用 15 1.6.1 NADPH氧化酶家族介紹 15 1.6.2 NADPH氧化酶4(NOX4) 16 1.6.3 NADPH氧化酶產生ROS路徑 17 1.7 siRNA簡介及應用 18 1.7.1 siRNA 18 1.7.2 siRNA 修飾 18 1.7.2基因沉默 (gene silencing) 19 1.7.3細胞轉染 (cell transfection) 20 1.8 研究動機 21 第2章、材料與方法 22 2.1 研究架構 22 2.2藥品與設備 23 2.2.1 藥品 23 2.2.2 設備 25 2.3 溶菌酶微氣泡製備 26 2.4 細胞培養 27 2.4.1 細胞株及細胞繼代 27 2.4.2 細胞計數 27 2.5.基因轉殖超音波導入系統 28 2.6 CDDP細胞毒殺分析 29 2.6.1 細胞IC50分析 29 2.6.2 CDDP與超音波介導技術結合微氣泡對於細胞存活之影響 31 2.7 CDDP誘發細胞NOX基因表現分析 32 2.7.1即時定量反轉錄聚合酶連鎖反應 qRT-PCR 32 2.7.2 RNA extraction 33 2.7.3反轉錄 (Reverse Transcription) 35 2.7.4定量PCR (qPCR) 35 2.8 表面吸附 NOX4 siRNA 之溶菌酶微氣泡製備 36 2.9 溶菌酶微氣泡與吸附NOX4 siRNA 溶菌酶微氣泡之性質分析 37 2.9.1 濃度量測 37 2.9.2 吸附NOX4 siRNA之溶菌酶微氣泡吸附效率分析 38 2.10 體外細胞實驗 39 2.10.1細胞實驗組別設計與方法 39 2.10.2 細胞生存率分析 40 2.10.3 轉染效率分析 41 2.10.4 細胞NOX4基因抑制分析 42 2.10.5 細胞ROS分析 44 2.11離體組織 Organ of Corti實驗 45 2.11.1離體組織 Organ of Corti 培養 45 2.11.2 離體組織 Organ of Corti實驗 45 2.11.3離體組織 Organ of Corti固定 46 2.11.4螢光染色及共軛焦顯微鏡拍攝 46 2.12 統計分析 47 第3章、實驗結果 48 3.1 CDDP細胞毒殺分析 48 3.1.1 CDDP IC50分析 48 3.1.2 CDDP與超音波介導技術結合微氣泡對於細胞存活之影響 49 3.2 CDDP誘發細胞NOX基因表現分析 50 3.3 溶菌酶微氣泡與吸附NOX4 siRNA 之溶菌酶微氣泡性質分析 52 3.3.1 濃度量測 52 3.3.2吸附NOX4 siRNA之溶菌酶微氣泡吸附效率分析 53 3.4 體外細胞實驗 54 3.4.1 細胞生存率分析 54 3.4.2 轉染效率分析 56 3.4.3 細胞NOX4基因抑制分析 60 3.4.4 細胞ROS分析 65 3.5離體組織 Organ of Corti螢光染色 67 第4章、討論 69 第5章、結論 73 參考文獻 74

[1] Ryan Crane and Shannon M. Conley et al., “Gene Therapy to the Retina and the Cochlea”, Front Neurosci,2021 Mar;15: 652215.
[2] Mariola Sliwinska-Kowalska and Adrian Davis, “Noise-induced hearing loss”, Noise Health,2012 Nov-Dec;14(61):274-80.
[3] N Fischer 1 and B Weber et al., “Presbycusis - Age Related Hearing Loss”, Laryngorhinootologie,2016 Jul;95(7):497-510.
[4] Corné J Kros and Peter S Steyger, “Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies”, Cold Spring Harb Perspect Med ,2019 Nov 1;9(11):a033548.
[5] Jessica Paken and Cyril D. Govender et al., “Cisplatin-Associated Ototoxicity: A Review for the Health Professional”, J Toxicol ,2016 Dec 27;1809394.
[6] Lanvers-Kaminsky and Ag Am Zehnhoff-Dinnesen et al., “Drug-induced ototoxicity: Mechanisms, Pharmacogenetics, and protective strategies”,Clin Pharmacol Ther ,2017 Apr;101(4):491-500.
[7] Reddel RR and Kefford RF et al., “Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration”, Cancer Treat Rep,1982 Jan;66(1):19-23.
[8] C Bokemeyer and C C Berger et al., “Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer”, Br J Cancer,1998 Apr;77(8):1355-62.
[9] Sun W and Wang W, “Advances in research on labyrinth membranous barriers”, J. Otol, 2015 Sep;10, 99–104.
[10] Naila El Kechai and Florence Agnely et al., “Recent advances in local drug delivery to the inner ear”, Int. J. Pharm, 2015 Oct 15;494, 83–101.
[11] Lilun Li and Tiffany Chao, “Advances in Nano-based Inner Ear Delivery Systems for the Treatment of Sensorineural Hearing Loss”, Adv Drug Deliv Rev, 2017 Jan 1; 108: 2–12.
[12] Robert A and Hazlitt et al., “Progress in the Development of Preventative Drugs for Cisplatin-Induced Hearing Loss”, J Med Chem, 2018 Jul 12; 61(13): 5512–5524.
[13] Clerici WJ and Yang L, “Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function”, Hear Res,1996 Nov 1; 101(1-2):14-22.
[14] Kopke RD and Liu W et al., “Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells”, Am J Otol, 1997 Sep; 18(5):559-71.
[15] Bánfi B and Malgrange B et al., “NOX3, a superoxide-generating NADPH oxidase of the inner ear”, J Biol Chem, 2004 Oct 29; 279(44):46065-72.
[16] Pigeolet E and Corbisier P et al., “Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals”, Mech Ageing Dev,1990 Feb 15; 51(3):283-97.
[17] Watanabe K and Inai S et al., “Expression of caspase-activated deoxyribonuclease (CAD) and caspase 3 (CPP32) in the cochlea of cisplatin (CDDP)-treated guinea pigs”, Auris Nasus Larynx,2003 Aug; 30(3):219-25.
[18] Mukherjea D and Jajoo S et al., “Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat”, Antioxid Redox Signal ,2010 Sep 1; 13(5):589-98.
[19] Debashree Mukherjea and Sarvesh Jajoo et al.,“Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat”,J Neurosci, 2008 Dec 3; 28(49): 13056–13065.
[20] Caterina MJ and Schumacher MA et al.,“The capsaicin receptor: a heat-activated ion channel in the pain pathway”, Nature,1997 Oct 23; 389(6653):816-24.
[21] Seyedeh Sara Azadeh and Parinaz Lordifard et al.,“Ultrasound and Sonogenetics: A New Perspective for Controlling Cells with Sound”, Iran J Pharm Res, 2021 Summer; 20(3): 151–160.
[22] Maresca D and Lakshmanan A et al.,“Biomolecular ultrasound and sonogenetics Annual review of chemical and biomolecular engineering”,Annu Rev Chem. Biomol Eng ,2018 Jun 7;9:229–52.
[23] David Maresca and Anupama Lakshmanan et al.,“Biomolecular Ultrasound and Sonogenetics”, Annu Rev Chem Biomol Eng , 2018 Jun 7; 9: 229–252.
[24] Dromi S and Frenkel V et al.,“Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect”, Clin Cancer Res , 2007 May 1;13, 2722–2727
[25] Schoellhammer CM and Schroeder A et al.,“Ultrasound-mediated gastrointestinal drug delivery ”,Sci Transl Med,2015 Oct 21; 7(310):310ra168.
[26] Zderic V and Vaezy S et al.,“Ocular drug delivery using 20-kHz ultrasound ”,Ultrasound Med Biol,2002 Jun; 28(6):823-9.
[27] Dayton P and Klibanov A et al.,“Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles”, Ultrasound Med Biol,1999 Oct; 25(8):1195-201.
[28] Hynynen K and McDannold N et al.,“Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits”,Radiology,2001 Sep; 220(3):640-6.
[29] Lentacker I and De Geest BG et al.,“Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA”, Langmuir , 2006 Aug 15; 22(17):7273-8.
[30] Goldberg BB and Liu JB et al.,“Ultrasound contrast agents: a review”, Ultrasound Med Biol ,1994; 20(4):319-33.
[31] Cosgrove D,“Ultrasound contrast agents: an overview”,Eur J Radiol,2006 Dec; 60(3):324-30.
[32] Sanna V and Pintus G,“Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents”, Mol Pharm,2011 Jun 6; 8(3):748-57.
[33] Kaufmann BA and Lindner JR,“Molecular imaging with targeted contrast ultrasound”,Curr Opin Biotechnol,2007 Feb; 18(1):11-6.
[34] Xu RX and Huang J ,“Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer”,J Biomed Opt,2009 May-Jun; 14(3):034020.
[35] Jerzy O. Szablowski and Avinoam Bar-Zion et al.,“Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics”, Acc Chem Res, 2019 Sep 17; 52(9): 2427–2434.
[36] Flordeliza S Villanueva and William R Wagner ,“Ultrasound molecular imaging of cardiovascular disease”, Nat Clin Pract Cardiovasc Med, 2008 Aug; 5(0 2): S26–S32.
[37] Phillips LC and Klibanov AL et al.,“Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery”,Ultrasound Med Biol,2010;36:1470–1480.
[38] Wang Y and Zhou J et al.,“Delivery of TFPI-2 using SonoVue and adenovirus results in the suppression of thrombosis and arterial re-stenosis”,Exp Biol Med, 2010;235:1072–1081.
[39] Tinkov S and Coester C et al.,“New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization”,J Control Release, 2010;148:368–372.
[40] Fujii H and Sun Z ,“Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice”,JACC Cardiovasc Imaging,2009;2:869–879.
[41] Stride E ,“Physical principles of microbubbles for ultrasound imaging and therapy. ”,Cerebrovasc Dis,2009;27(Suppl 2):1–13.
[42] Lentacker I and Wang N et al.,“Ultrasound exposure of lipoplex loaded microbubbles facilitates direct cytoplasmic entry of the lipoplexes”,Mol Pharm,2009;6:457–467.
[43] Li W and Kong F et al.,“Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye”, Mol Vis ,2009; 15():267-75.
[44] Stieger K and Schroeder J et al.,“Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates”, Mol Ther,2009 Mar; 17(3):516-23.
[45] Zhi-Yi Chen and Yan Lin et al.,“Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles”, Cardiovasc Ultrasound , 2013 Apr 17; 11: 11.
[46] Bhattacharya and Prajapati BG et al.,“A conceptual review on micro bubbles”, Biomed J Sci Tech Res,2017;1(2):353–359.
[47] Muhammad Saad Khan and Jangsun Hwang et al.,“Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics”, Molecules, 2018 Sep; 23(9): 2210.
[48] Mark A. Borden and Dustin E. Kruse et al.,“Influence of Lipid Shell Physicochemical Properties on Ultrasound-Induced Microbubble Destruction”, IEEE Trans Ultrason Ferroelectr Freq Control, 2005 Nov; 52(11): 1992–2002.
[49] Mina Lee and Eun Yeol Lee et al.,“Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials”, Soft Matter,2015;11(11):2067–2079.
[50] Martin KH and Dayton PA,“ Current status and prospects for microbubbles in ultrasound theranostics”,Wiley Interdiscipl Rev Nanomed Nanobiotechnol, 2013;5(4):329–345.
[51] Qian Gong and Xingxing Gao et al.,“Drug-loaded microbubbles combined with ultrasound for thrombolysis and malignant tumor therapy”, Biomed Res Int,2019 Oct 1;2019:6792465.
[52] Javad Esmaeili and Farnoush Sadat Rezaei et al.,“Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes”,Heliyon,2020 Jun 17;6(6):e04189–e04189.
[53] Priyanka Tharkar and Ramya Varanasi et al.,“Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond”,Front Bioeng Biotechnol, 2019 Nov 22;7:324–324.
[54] Katherine Ferrara and Rachel Pollard et al.,“Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery”, Annu Rev Biomed Eng, 2007;9:415–447.
[55] Xiaowen Cai and Yuan Jiang et al.,“Ultrasound-responsive materials for drug/gene delivery”, Front Pharmacol, 2020 Jan 31;10:1650–1650.
[56] Jia-Wei Fu and Yi-Sheng Linet et al.,“ Multifunctionalized microscale ultrasound contrast agents for precise theranostics of malignant tumors”, Contrast Media Mol Imaging,2019 Jul 7;2019:3145647.
[57] Anne Rix and Adelina Curaj et al.,“ Ultrasound microbubbles for diagnosis and treatment of cardiovascular diseases”,Semin Thromb Hemost, 2020; 46(05): 545-55.
[58] Vu Long Tran and Anthony Novellet et al.,“Impact of blood-brain barrier permeabilization induced by ultrasound associated to microbubbles on the brain delivery and kinetics of cetuximab: an immunoPET study using 89Zr-cetuximab”, J Control Release,2020 Dec 10;328:304–312.
[59] Shuaishuai Huang and Yu Ren et al.,“Application of ultrasound-targeted microbubble destruction-mediated exogenous gene transfer in treating various renal diseases”, Hum Gene Ther,2019 Feb;30(2):127–138.
[60] Yang Liu and Fang Yang et al.,“Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics”,ACS Nano,2017;11(2):1509–1519.
[61] Yunxue Xu and Xiaolong Liang et al.,“Enhancing therapeutic efficacy of combined cancer phototherapy by ultrasound-mediated in situ conversion of near-infrared cyanine/porphyrin microbubbles into nanoparticles”,Adv Func Mater,2017;27(48):1704096.
[62] S. Tinkov and R. Bekeredjian et al., “fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, Journal of Pharmaceutical Sciences, 98, 6, 1935-61, 2009.
[63] Yuana Yuana and Linglei Jiang et al.,“Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles”, Int J Mol Sci , 2017 Aug; 18(8): 1610.
[64] Muna Aryal and Krisztina Fischer et al.,“Effects on P-Glycoprotein Expression after Blood-Brain Barrier Disruption Using Focused Ultrasound and Microbubbles”, PLoS One , 2017 Jan 3; 12(1): e0166061.
[65] Dallan McMahon and Ethan Mah et al.,“Angiogenic response of rat hippocampal vasculature to focused ultrasound-mediated increases in blood-brain barrier permeability”, Sci Rep,2018 Aug 15; 8: 12178.
[66] Yuhang Tian and Zhao Liu et al.,“New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer”, Int J Nanomedicine,2020 Jan 21; 15: 401–418.
[67] Aidan P.G. Walsh and Henry N. Gordon et al.,“Ultrasonic particles: An approach for targeted gene delivery”, Adv Drug Deliv Rev, 2021 Dec; 179: 113998.
[68] Patrizia Ferraboschi and Samuele Ciceri et al.,“Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic”, Antibiotics, 2021;10(12)1534.
[69] Lien Callewaert and Chris W Michiels et al.,“Lysozymes in the animal kingdom”, J Biosci,2010 Mar;35(1):127-60.
[70] Stephanie A Ragland and Alison K et al.,“Criss From bacterial killing to immune modulation: Recent insights into the functions of lysozyme”, PLoS Pathog,2017 Sep 21;13(9):e1006512.
[71] Hugues Lelouard and Sandrine Henri et al.,“Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme”, Gastroenterology, 2010 Jan;138(1):173-84.e1-3.
[72] R K Pipe,“Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis”, Histochem J, 1990 Nov;22(11):595-603.
[73] Sonia Melino and Meifang Zhou et al.,“Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery”, Amino Acids, 2012 Aug;43(2):885-96.
[74] Zhou M and Cavalieri F et al.,“Confinement of Acoustic Cavitation for the Synthesis of Protein-Shelled Nanobubbles for Diagnostics and Nucleic Acid Delivery”,ACS Macro Lett,2012;1, 853– 856.
[75] Francesca Cavalieri and Laura Micheli et al.,“Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C”, Anal Bioanal Chem, 2013 Jun;405(16):5531-8.
[76] Cavalieri F and Ashokkumar M et al.,“Ultrasonic Synthesis of Stable, Functional Lysozyme Microbubbles”, Langmuir,2008;24,10078– 10083.
[77] Melino S and Zhou M et al.,“Molecular Properties of Lysozyme-Microbubbles: Towards the Protein and Nucleic Acid Delivery”,Amino Acids,2012;43, 885– 896.
[78] Cavalieri F and Micheli L et al.,“Electrochemical Investigation of the Interaction Between Lysozyme-Shelled Microbubbles and Vitamin C”,Anal Bioanal Chem, 2013;405, 5531– 5538.
[79] Francesca Cavalieri and Laura Micheli et al.,“Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles”, ACS Appl Mater Interfaces, 2013 Jan 23;5(2):464-71.
[80] Sirsi SR and Borden MA ,“Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents”,Theranostics,2012;2,1208– 1222.
[81] Zhou M and Cavalieri F ,“ Confinement of Acoustic Cavitation for the Synthesis of Protein-Shelled Nanobubbles for Diagnostics and Nucleic Acid Delivery”,ACS Macro Lett,2012;1, 853– 856.
[82] Peyrone M,“ Ueber die Einwirkung des Ammoniaks auf Platinchlorür”,Justus Liebigs Annalen der Chemie , 1844;51 (1): p. 1-29.
[83] Weiss RB and Christian MC,“ New cisplatin analogues in development. A review”, Drugs,1993;46:360–377.
[84] Goodsell DS,“ The molecular perspective: Cisplatin”,Stem Cells,2006 Mar;24:514–515.
[85] Rosenberg B and L Van Camp et al.,“The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes”, J Biol Chem, 1967 Mar 25;242(6): p.1347–52.
[86] Rosenberg B and L Van Camp et al., “Platinum compounds: a new class of potent antitumour agents”, Nature, 1969 Apr 26;222(5191): p. 385–6.
[87] Kelland L, “The resurgence of platinum-based cancer chemotherapy”, Nat Rev Cancer, 2007 Aug;7:573–584.
[88] Ciarimboli G and Deuster D et al., “Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions”, Am J Pathol, 2010; 176, 1169–1180.
[89] Johnstone T C and Suntharalingam K et al., “ The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs”, Chem Rev ,2016; 116, 3436–3486.
[90] Benkafadar N and Menardo J et al., “Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy”,EMBO Mol Med,2017;9, 7–26.
[91] Wang J and Ladrech S et al., “Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss”,Cancer Res,2004;64, 9217–9224.
[92] So HS and Kim HJ et al., “Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1”,J Assoc Res Otolaryngol, 2008; 9, 290– 306.
[93] Chung WH and Boo SH et al., “Proapoptotic effects of NF-kB on cisplatin-induced cell death in auditory cell line”, Acta Oto Laryngol, 2008;128,1063– 1070.
[94] McNally JS and Saxena A et al., “Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium”, Arterioscl Throm Vas,2005;25(8):1623–1628.
[95] Jones QR and Warford J et al., “Target-based selection of flavonoids for neurodegenerative disorders”,Trends Pharmacol Sci,2012;33(11):602–610.
[96] Lee JS and Kang SU et al., “Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK”,Toxicol Lett, 2010;199(3):308–316.
[97] Cai JY and Yang J et al., “ Mitochondrial control of apoptosis: the role of cytochrome c”, Bba Bioenergetics, 1998;1366(1–2):139–149.
[98] Benyu Nan and Xi Gu et al., “The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss”, Drug Des Devel Ther, 2019 Dec 18;13:4291-4303.
[99] Qing Tang and Xianren Wang et al., “Cisplatin-induced ototoxicity: Updates on molecular mechanisms and otoprotective strategies”, Eur J Pharm Biopharm, 2021 Jun;163:60-71.
[100] Sebastian Altenhöfer and Kim A Radermacher et al., “Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement”, Antioxid Redox Signal, 2015 Aug 10; 23(5): 406–427.
[101] Lassègue B and San Martin A et al., “Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system”, Circ Res, 2012;110: 1364–1390.
[102] Cairns B and Kim JY et al., “NOX inhibitors as a therapeutic strategy for stroke and neurodegenerative disease”,Curr Drug Targets,2012;13: 199–206.
[103] Radermacher KA and Wingler K et al., “Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress”,Antioxid Redox Signal,2013;18: 1418–1427.
[104] Carnesecchi S and Deffert C et al., “A key role for NOX4 in epithelial cell death during development of lung fibrosis”, Antioxid Redox Signal,2011;15: 607–619.
[105] Hecker L and Cheng J et al., “Targeting NOX enzymes in pulmonary fibrosis”, Cell Mol Life Sci,2012;69: 2365–2371.
[106] van der Vliet A, “NADPH oxidases in lung biology and pathology: host defense enzymes, and more”,Free Radic Biol Med,2008;44: 938–955.
[107] Block K and Gorin Y , “Aiding and abetting roles of NOX oxidases in cellular transformation”,Nat Rev Cancer,2012;12: 627–637.
[108] Geiszt M and Kopp JB et al., “Identification of renox, an NAD(P)H oxidase in kidney”, Proc Natl Acad Sci U S A,2000;97:8010–8014.
[109] Shiose A and Kuroda J et al., “A novel superoxide-producing NAD(P)H oxidase in kidney”,J Biol Chem,2001;276:1417–1423.
[110] Schilder YD and Heiss EH et al., “NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells”,Free Radic Biol Med,2009.
[111] Pedruzzi E and Guichard C et al., “ NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells”,Mol Cell Biol,2004;24:10703–10717.
[112] Vaquero EC and Edderkaoui M et al., “ Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells”,J Biol Chem,2004;279:34643–34654.
[113] Mahadev K and Motoshima H et al., “The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction”,Mol Cell Biol,2004;24:1844–1854.
[114] Meng D and Lv DD et al., “Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells”, Cardiovasc Res,2008;80:299–308.
[115] Natarajan V and Pendyala S et al., “Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells”, Antioxid Redox Signal, 2008.
[116] Santos CX and Tanaka LY et al., “Mechanisms and Implications of Reactive Oxygen Species Generation During the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport and NADPH Oxidase”, Antioxid Redox Signal,2009.
[117] Cucoranu I and Clempus R et al., “NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts”, Circ Res,2005;97:900–907.
[118] Yang S and Zhang Y et al., “Expression of Nox4 in osteoclasts”,J Cell Biochem, 2004;92:238–248.
[119] Li J and Stouffs M et al., “The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation”,Mol Biol Cell,2006;17:3978–3988.
[120] Clempus RE and Sorescu D et al., “ Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype”,Arteriosclerosis thrombosis and vascular biology,2007;27:42–48.
[121] Weijun Ma and Jianping Li et al., “miR214-regulated p53-NOX4/p66shc pathway plays a crucial role in the protective effect of Ginkgolide B against cisplatin-induced cytotoxicity in HEI-OC1 cells”,Chem Biol Interact,2016 Feb 5;245:72-81.
[122] Hyung-Jin Kim and Jeong-Han Lee et al., “Roles of NADPH Oxidases in Cisplatin-Induced Reactive Oxygen Species Generation and Ototoxicity”,Journal of Neuroscience, 2010 March17;30 (11) 3933-3946.
[123] Shigefumi Morioka and Hirofumi Sakaguchi et al., “Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction”, J Neurochem, 2018 Aug;146(4):459-473.
[124] Iyer GY and Questel JH, “NADPH and NADH oxidation by Guinea pig polymorphonuclear leucocytes”,Can J Biochem Physiol, 1963;41:427–434.
[125] Rossi F and Zatti M, “Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells”,Experientia,1964;20:21–23.
[126] Bredt DS and Snyder SH , “Isolation of nitric oxide synthetase, a calmodulin- requiring enzyme”, Proc Natl Acad Sci U. S. A., 1990;87:682–685.
[127] Palacios M and Knowles RG et al., “Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands”,Biochem Biophys Res Commun,1989;165:802–809.
[128] Beckman JS and Beckman TW et al., “Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide”,Proc Natl Acad Sci U. S. A.,1990;87:1620–1624.
[129] Jared P Taylor and Hubert M Tse, “The role of NADPH oxidases in infectious and inflammatory diseases”, Redox Biol,2021 Dec; 48: 102159.
[130] Bienert GP and Møller ALB et al., “ Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes”,J Biol Chem, 2007;282:1183–1192.
[131] al Ghouleh I and Frazziano G et al., “ Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy”, Cardiovasc Res,2013;97:134–142.
[132] Davies MJ, “ Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases”,Pharmacology & Therapeutics, 2021;107685.
[133] Haschka D and Hoffmann A et al., “ Iron in immune cell function and host defense”, Seminars in Cell & Developmental Biology,2020 Jul;115:27-36.
[134] Caplen NJ and Parrish S et al., “Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems”,Proc Natl Acad Sci USA,2001;98:9742–9747.
[135] Elbashir S.M and Harborth J et al., “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells”,Nature,2001;411:494–498.
[136] Draz MS and Fang BA et al., “Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections”,Theranostics,2014;4:872.
[137] Weng Y and Xiao H et al., “RNAi therapeutic and its innovative biotechnological evolution”,Biotechnol Adv, 2019;37:801–825.
[138] Scott LJ, “Givosiran: First Approval”,Drugs,2020;80:335–339.
[139] Rana TM, “Illuminating the silence: Understanding the structure and function of small RNAs”,Nat Rev Mol Cell Biol,2007;8:23–36.
[140] Volkov AA and Kruglova NYS et al., “Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect”,Oligonucleotides, 2009;19:191–202.
[141] Byungji Kim and Ji-Ho Park et al., “Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery”, Adv Mater,2019 Dec; 31(49): e1903637.
[142] Czauderna F and Fechtner M et al., “Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells”,Nucleic Acids Res, 2003;31:2705–2716.
[143] Sato A and Choi SW et al., “Polymer brush-stabilized polyplex for a siRNA carrier with long circulatory half-life”,J Control Release,2007;122:209–216.
[144] JK Lam and MY Chow et al., “siRNA Versus miRNA as Therapeutics for Gene Silencing”,Molecular Therapy Nucleic Acids, 2015 Sep 15;4, e252.
[145] E Bernstein and A A Caudy et al., “Role for a bidentate ribonuclease in the initiation step of RNA interference”,Nature, 2001 Jan 18;409(6818):363-6.
[146] Angela Reynolds and Devin Leake et al., “ Rational siRNA design for RNA interference”, Nat Biotechnol,2004 Mar;22(3):326-30.
[147] Kotaro Nakanishi, “Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? ”, Wiley Interdiscip Rev RNA, 2016 Sep;7(5):637-60.
[148] Byungji Kim and Ji-Ho Park et al., “Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery”, Adv Mater,2019 Dec;31(49):e1903637.
[149] Agnieszka Fus-Kujawa and Pawel Prus et al., “An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro ”, Front Bioeng Biotechnol, 2021; 9: 701031.
[150] Michele M P Lufino and Pauline A H Edser et al., “Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression”, Mol Ther,2008 Sep;16(9):1525-38.
[151] Lin Peng and Wendian Xiong et al., “A simple, rapid method for evaluation
of transfection efficiency based on fluorescent dye”, Bioengineered,2017; 8(3): 225–231.
[152] Natalie Jayne Werling and Stifani Satkunanathan et al., “Systematic Comparison and Validation of Quantitative Real-Time PCR Methods for the Quantitation of Adeno-Associated Viral Products”,Hum Gene Ther Methods, 2015 Jun 1; 26(3): 82–92.
[153] F. Cavalieri and M. Ashokkumar et al., “Ultrasonic synthesis of stable, functional lysozyme microbubbles”, Langmuir, 24 (18), 10078-10083, 2008.
[154] Sephra N. Rampersad, “Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays”, Sensors (Basel), 2012; 12(9): 12347–12360.
[155] 廖愛禾,江芃誼, “探討微氣泡超音波應用於聽覺細胞增強基因敲落之效用及安全性”,醫學工程研究所,國立台灣科技大學,2021.
[156] Stelios Florinas and Hye Yeong Nam, “Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells”, Mol Pharm, 2013 May 6; 10(5): 2021–2030.
[157] Ling Li1 and Xia Li1 et al., “Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy”, Theranostics, 2017; 7(6):1633-1649.

無法下載圖示 全文公開日期 2027/08/08 (校內網路)
全文公開日期 2027/08/08 (校外網路)
全文公開日期 2027/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE