簡易檢索 / 詳目顯示

研究生: 黃薆齡
Ai-Ling Huang
論文名稱: 鑲嵌金-鉑雙金屬之聚丙烯腈纖維薄膜製備及其熱治療應用
Preparation and evaluation of gold- platinum particles decorating polyacrylonitrile nonwoven mats : their in vitro and in vivo studies
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 王毓淇
Yu-Chi Wang
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 135
中文關鍵詞: 靜電紡絲雙金屬聚丙烯腈熱治療
外文關鍵詞: Electrospinning, Bimetallic, Polyacrylonitrile, Thermal therapy
相關次數: 點閱:411下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用靜電紡絲系統製備含有金-鉑雙金屬顆粒之聚丙烯腈奈米纖維薄膜(Pt/Au PAN),透過掃描式電子顯微鏡(FE-SEM)及 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析表面形貌及元素組成成分,Pt/Au雙金屬顆粒(Pt/Au bimetallic)以大小251.35 nm鑲嵌於由聚丙烯腈(polyacrylonitrile, PAN)組成之奈米纖維,經近紅外光(Near Infrared, NIR)照射,以紅外線熱影像儀(FLIR)量測,其具升溫效果且升溫曲線較穩定,於體外實驗(in vitro)顯示Pt/Au PAN及Pt/Au PAN(NIR)皆會抑制小鼠纖維母細胞(3T3 cell)及巨噬細胞(Raw 264.7 cell)生長,以Pt/Au PAN(NIR)具較高抑制性,顯示其於抑制疤痕組織過度增生具探討性,且於感應耦合電漿質譜儀(Inductively Coupled Plasma, ICP)離子釋放濃度測試,得知在近紅外光(NIR)照射下,Pt/Au PAN能有更大量Au及Pt離子釋放,因此於抗菌實驗中Pt/Au PAN及Pt/Au PAN(NIR)對革蘭氏陽性菌及革蘭氏陰性菌達抑菌效果,以Pt/Au PAN(NIR)具更好的殺菌效果,最後進行體內(in vivo)小鼠創傷實驗,以Pt/Au PAN及Pt/Au PAN(NIR)治療對傷口無造成嚴重沾黏,且皮膚組織恢復正常無壞死、傷口無過度纖維化、膠原蛋白再生情形佳,其中血管新生以Pt/Au PAN(NIR) 較好,對腎臟及肝臟抑無造成組織受損,顯示透過Pt/Au PAN及Pt/Au PAN(NIR)治療,傷口能有效癒合且對生物體不具顯著毒性。


The research used the Electrospinning technology to prepare the polyacrylonitrile (PAN) nanofiber film containing gold and platinum (Pt/Au PAN). By using the field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) to examine the surface morphology, elements and chemical structure of Pt/Au PAN. Under the Near Infrared (NIR), it shows that Pt/Au PAN has a more stable temperature rise compare to the PAN and Au PAN. Also, it turns out that Pt/Au PAN is better to curb the growth of 3T3 cell and Raw 264.7 cell compare to the PAN in vitro. Based on the results, it is worthwhile for people to have a further research on how can this dressing curbs the tissue proliferation on wounds. Besides, in the Inductively Coupled Plasma (ICP)test, Pt/Au PAN can release more Au and Pt ions under the NIR. Under the further antimicrobial experiment, it reveals that Pt/Au PAN(NIR) performs better than Pt/Au PAN in curb of Gram-Positive and Gram-Negative. Lastly, both Pt/Au PAN and Pt/Au PAN(NIR) achieve a valuable effect on laboratory animal. It turns out that both Pt/Au PAN and Pt/Au PAN(NIR) do not cause wound adhesive and fibrosis on mice. Besides, skin tissue is healing well and collagen is regenerating great. But Pt/Au PAN(NIR) acts better on blood vessels regeneration. Furthermore, both Pt/Au PAN and Pt/Au PAN(NIR) do not produce damage on mice’s liver and kidney. Note that the treatment based on Pt/Au PAN and Pt/Au PAN(NIR) doesn't have any significant toxicity toward organism, and also provides a favorable result on wound healing.

摘要I AbstractII 目錄III 圖目錄VI 表目錄IX 第 1 章 緒論1 1.1研究動機與目的1 1.2實驗設計2 第 2 章 文獻回顧3 2.1皮膚構造及功能3 2.2傷口疤痕組織4 2.2.1傷口修復機制4 2.2.2疤痕組織生成6 2.3 奈米鉑-金雙金屬(Pt/Au bimetallic nanoparticles)8 2.3.1近紅外光熱治療(PTT)應用8 2.3.2抗菌效果9 2.4 靜電紡絲(Electrospinning)10 2.4.1靜電紡絲技術10 2.4.2靜電紡絲參數11 第 3 章 材料及方法12 3.1藥品及材料12 3.2儀器及設備14 3.3敷料製備16 3.3.1 Pure PAN製備16 3.3.2 Pt/Au PAN敷料製備16 3.4材料分析17 3.4.1高解析度掃描式電子顯微鏡分析(FE-SEM)17 3.4.2能量散色X射線光譜(EDS)分析19 3.4.3高解析電子能譜儀(XRXPS)19 3.4.4薄膜纖維及奈米合金顆粒直徑分析20 3.4.5表面孔隙率分析20 3.4.6感應耦合電漿質譜儀(ICP-OES/MS)20 3.5升溫實驗21 3.6細胞實驗22 3.6.1細胞株選用22 3.6.2細胞解凍活化23 3.6.3細胞繼代培養23 3.6.4細胞計數24 3.6.5細胞冷凍保存25 3.6.6細胞毒性測試(MTT Assay)26 3.6.7傷口癒合試驗27 3.6.8單核球趨化試驗27 3.7抗菌試驗(Anti-bacteria test)28 3.7.1細菌培養基製備28 3.7.2細菌株選用28 3.7.3金黃色葡萄球菌(S.aureus)及大腸桿菌(E. coli)培養29 3.7.4抑菌圈測試(Inhibition Zone)30 3.7.5殺菌率測試(Sterilization Rate Text)31 3.8動物創傷實驗(in vivo)33 3.8.1實驗動物33 3.8.3創傷手術、包紮及近紅外光(NIR)治療35 3.8.4傷口影像紀錄與面積估算36 3.8.5傷口床再生組織及肝腎臟病理切片分析37 3.8.6傷口床新生血管分析38 3.8.7病理切片膠原蛋白緻密度量化38 3.9統計學分析(Statistical Analysis)38 第 4 章 結果與討論39 4.1掃描式電子顯微鏡(FE-SEM)影像分析39 4.1.1敷料纖維直徑及Pt/Au雙金屬顆粒直徑統計分析39 4.1.2表面孔隙率分析39 4.1.3能量散色X射線光譜(EDS)分析40 4.2 X射線光電子能譜儀(XPS)表面化學組成分析41 4.3升溫曲線(Heating-rate curve)分析42 4.4體外細胞實驗(in vitro)43 4.4.1對3T3 cell細胞存活率分析(Cell Viability)43 4.4.2對Raw 264.7 cell細胞存活率分析(Cell Viability)44 4.4.3細胞遷移分析45 4.4.4細胞趨化分析46 4.5 Pt與Au離子釋放檢測47 4.6抗菌實驗分析48 4.6.1對金黃色葡萄球菌(S. aureus)及大腸桿菌(E. coli)抑菌圈分析48 4.6.2對金黃色葡萄球菌(S. aureus)及大腸桿菌(E. coli)殺菌率分析49 4.7體內動物創傷實驗(in vivo)51 4.7.1小鼠體重紀錄51 4.7.2小鼠創傷沾黏指數52 4.7.3小鼠傷口面積紀錄53 4.7.4傷口床及原生皮膚病理切片55 4.7.4.1皮膚組織結構分析55 4.7.4.2傷口床血管新生分析56 4.7.2.3膠原蛋白緻密度分析57 4.7.5腎臟及肝臟病理切片分析58 第 5 章 結論59 參考文獻60

1. Slavin YN, Asnis J, Hafeli UO, Bach H: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017, 15(1):65.
2. Ahmad A, Qureshi AS, Li L, Bao J, Jia X, Xu Y, Guo X: Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Colloids Surf B Biointerfaces 2016, 143:490-498.
3. Liang H, Wu Y, Ou XY, Li JY, Li J: Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. Nanotechnology 2017, 28(46):465702.
4. Yang Q, Peng J, Xiao Y, Li W, Tan L, Xu X, Qian Z: Porous Au@Pt Nanoparticles: Therapeutic Platform for Tumor Chemo-Photothermal Co-Therapy and Alleviating Doxorubicin-Induced Oxidative Damage. ACS Appl Mater Interfaces 2018, 10(1):150-164.
5. Hurtado RB, Cortez-Valadez M, Flores-Lopez NS, Flores-Acosta M: Agglomerates of Au-Pt bimetallic nanoparticles: synthesis and antibacterial activity. Gold Bull 2020, 53(2):93-100.
6. Sharma C, Ansari S, Ansari MS, Satsangee SP: Phyto-mediated synthesis of Pt and Au/Pt bimetallic nanoparticles using Syzygium aromaticum bud-extract: Study of their catalytic, antibacterial, and antioxidant activities. J Ind Eng Chem 2022, 111:499-508.
7. Ferrando R, Jellinek J, Johnston RL: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 2008, 108(3):845-910.
8. Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos NK, Prombona A, Karanikolos GN: Ag and Cu Monometallic and Ag/Cu Bimetallic Nanoparticle-Graphene Composites with Enhanced Antibacterial Performance. ACS Appl Mater Interfaces 2016, 8(41):27498-27510.
9. Motshekga SC, Ray SS, Onyango MS, Momba MN: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater 2013, 262:439-446.
10. de Faria AF, Perreault F, Shaulsky E, Arias Chavez LH, Elimelech M: Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites. ACS Appl Mater Interfaces 2015, 7(23):12751-12759.
11. Hatamie A, Khan A, Golabi M, Turner AP, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S et al: Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 2015, 31(39):10913-10921.
12. Cruces E, Arancibia-Miranda N, Manquian-Cerda K, Perreault F, Bolan N, Azocar MI, Cubillos V, Montory J, Rubio MA, Sarkar B: Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents. ACS Appl Nano Mater 2022, 5(1):1472-1483.
13. Ali MR, Panikkanvalappil SR, El-Sayed MA: Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J Am Chem Soc 2014, 136(12):4464-4467.
14. Kruse DE, Stephens DN, Lindfors HA, Ingham ES, Paoli EE, Ferrara KW: A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis. IEEE Trans Biomed Eng 2011, 58(7):2002-2012.
15. Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y, Wu X, Chen C: Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale 2014, 6(7):3670-3678.
16. Yang Y, Chen M, Wu Y, Wang P, Zhao Y, Zhu W, Song Z, Zhang XB: Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Adv 2019, 9(49):28541-28547.
17. Jin L, Guo X, Gao D, Liu Y, Ni J, Zhang Z, Huang Y, Xu G, Yang Z, Zhang X et al: An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact Mater 2022, 16:162-172.
18. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM: Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014, 8(10):10682-10686.
19. Ahmed KBA, Raman T, Anbazhagan V: Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv 2016, 6(50):44415-44424.
20. Puja P, Kumar P: A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 2019, 211:94-99.
21. Zhao Y, Ye C, Liu W, Chen R, Jiang X: Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed Engl 2014, 53(31):8127-8131.
22. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, Nassiri-Kashani M, Naghizadeh MM, Dowlati Y: Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region. Sci World J 2012:5.
23. Giacomoni PU, Mammone T, Teri M: Gender-linked differences in human skin. J Dermatol Sci 2009, 55(3):144-149.
24. Sandby-Moller J, Poulsen T, Wulf HC: Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm-Venereol 2003, 83(6):410-413.
25. Gantwerker EA, Hom DB: Skin: histology and physiology of wound healing. Clin Plast Surg 2012, 39(1):85-97.
26. Zaidi Z, Lanigan SW: Skin: structure and function. In: Dermatology in Clinical Practice. edn.: Springer; 2010: 1-15.
27. Owda AY, Salmon N, Casson AJ, Owda M: The Reflectance of Human Skin in the Millimeter-Wave Band. Sensors (Basel) 2020, 20(5).
28. Broughton G, 2nd, Janis JE, Attinger CE: The basic science of wound healing. Plast Reconstr Surg 2006, 117(7 Suppl):12S-34S.
29. Gurtner GC, Werner S, Barrandon Y, Longaker MT: Wound repair and regeneration. Nature 2008, 453(7193):314-321.
30. Reinke JM, Sorg H: Wound repair and regeneration. Eur Surg Res 2012, 49(1):35-43.
31. Martin P, Leibovich SJ: Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 2005, 15(11):599-607.
32. Werner S, Grose R: Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003, 83(3):835-870.
33. Kreimendahl F, Marquardt Y, Apel C, Bartneck M, Zwadlo-Klarwasser G, Hepp J, Jockenhoevel S, Baron JM: Macrophages significantly enhance wound healing in a vascularized skin model. J Biomed Mater Res A 2019, 107(6):1340-1350.
34. Eming SA, Krieg T, Davidson JM: Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007, 127(3):514-525.
35. Kawasumi A, Sagawa N, Hayashi S, Yokoyama H, Tamura K: Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Top Microbiol Immunol 2013, 367:33-49.
36. Eming SA, Martin P, Tomic-Canic M: Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 2014, 6(265):265sr266.
37. Kang SU, Kim YS, Kim YE, Park JK, Lee YS, Kang HY, Jang JW, Ryeo JB, Lee Y, Shin YS et al: Opposite effects of non-thermal plasma on cell migration and collagen production in keloid and normal fibroblasts. PLoS One 2017, 12(11):e0187978.
38. Caceres M, Oyarzun A, Smith PC: Defective Wound-healing in Aging Gingival Tissue. J Dent Res 2014, 93(7):691-697.
39. Ashcroft GS, Mills SJ, Ashworth JJ: Ageing and wound healing. Biogerontology 2002, 3(6):337-345.
40. Guo S, Dipietro LA: Factors affecting wound healing. J Dent Res 2010, 89(3):219-229.
41. Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J: Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol 2016, 51:37-46.
42. Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA: Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol 2003, 162(2):533-546.
43. Mascharak S, desJardins-Park HE, Davitt MF, Griffin M, Borrelli MR, Moore AL, Chen K, Duoto B, Chinta M, Foster DS et al: Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 2021, 372(6540).
44. Saito M, Yamazaki M, Maeda T, Matsumura H, Setoguchi Y, Tsuboi R: Pirfenidone suppresses keloid fibroblast-embedded collagen gel contraction. Arch Dermatol Res 2012, 304(3):217-222.
45. Aljodah MA, Alfeehan MJ, Al-Zajrawee MZ: Outcome of Recurrent Auricular Keloid Treatment with a Combination of Surgical Excision and Perioperative Corticosteroid Injection. J Cutan Aesthet Surg 2021, 14(4):392-396.
46. Chrisostomidis C, Konofaos P, Chrisostomidis G, Vasilopoulou A, Dimitroulis D, Frangoulis M, Papadopoulos O: Management of external ear keloids using form-pressure therapy. Clin Exp Dermatol 2008, 33(3):273-275.
47. Renz P, Hasan S, Gresswell S, Hajjar RT, Trombetta M, Fontanesi J: Dose Effect in Adjuvant Radiation Therapy for the Treatment of Resected Keloids. Int J Radiat Oncol Biol Phys 2018, 102(1):149-154.
48. Park TH, Seo SW, Kim JK, Chang CH: Clinical characteristics of facial keloids treated with surgical excision followed by intra- and postoperative intralesional steroid injections. Aesthetic Plast Surg 2012, 36(1):169-173.
49. van Leeuwen MC, Bulstra AE, van Leeuwen PA, Niessen FB: A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy. J Plast Reconstr Aesthet Surg 2014, 67(12):1703-1710.
50. Ono I, Akasaka Y, Kikuchi R, Sakemoto A, Kamiya T, Yamashita T, Jimbow K: Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair Regen 2007, 15(5):617-623.
51. Lin WC, Liou SH, Kotsuchibashi Y: Development and Characterisation of the Imiquimod Poly(2-(2-methoxyethoxy)ethyl Methacrylate) Hydrogel Dressing for Keloid Therapy. Polymers (Basel) 2017, 9(11).
52. Jang H, Ryoo SR, Kostarelos K, Han SW, Min DH: The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials 2013, 34(13):3503-3510.
53. Yamada M, Foote M, Prow TW: Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015, 7(3):428-445.
54. Zhang ZJ, Wang J, Chen CH: Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging. Adv Mater 2013, 25(28):3869-3880.
55. May JP, Li SD: Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 2013, 10(4):511-527.
56. van Rhoon GC, Franckena M, ten Hagen TLM: A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv Drug Deliv Rev 2020, 163:145-156.
57. Riley RS, Day ES: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017, 9(4).
58. Conde J, Doria G, Baptista P: Noble metal nanoparticles applications in cancer. J Drug Deliv 2012, 2012:751075.
59. Zhang LX, Chen S, Ma R, Zhu LJ, Yan T, Alimu G, Du Z, Alifu N, Zhang XL: NIR-Excitable PEG-Modified Au Nanorods for Photothermal Therapy of Cervical Cancer. ACS Appl Nano Mater 2021, 4(12):13060-13070.
60. Chen S, Zhu LJ, Du Z, Ma R, Yan T, Alimu G, Zhang XL, Alifu N, Ma CL: Polymer encapsulated clinical ICG nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer. RSC Adv 2021, 11(34):20850-20858.
61. Cai HJ, Shen TL, Kirillov AM, Zhang Y, Shan CF, Li X, Liu WS, Tang Y: Self-Assembled Upconversion Nanoparticle Clusters for NIR-controlled Drug Release and Synergistic Therapy after Conjugation with Gold Nanoparticles. Inorg Chem 2017, 56(9):5295-5304.
62. Yang XP, Su LJ, La Rosa FG, Smith EE, Schlaepfer IR, Cho SK, Kavanagh B, Park W, Flaig TW: The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model. Bladder Cancer 2017, 3(3):201-210.
63. Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F: Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022, 349:269-303.
64. Yang Y, Chen M, Wu YJ, Wang P, Zhao Y, Zhu WX, Song ZL, Zhang XB: Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Adv 2019, 9(49):28541-28547.
65. Zhang H, Wang YM, Zhong H, Li J, Ding CF: Near-Infrared Light-Activated Pt@Au Nanorings-Based Probe for Fluorescence Imaging and Targeted Photothermal Therapy of Cancer Cells. ACS Appl Bio Mater 2019, 2(11):5012-5020.
66. Zhang GM: Functional gold nanoparticles for sensing applications. Nanotechnol Rev 2013, 2(3):269-288.
67. Cobley CM, Chen JY, Cho EC, Wang LV, Xia YN: Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 2011, 40(1):44-56.
68. Dreaden EC, Alkilany AM, Huang XH, Murphy CJ, El-Sayed MA: The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012, 41(7):2740-2779.
69. Jin L, Guo XQ, Gao D, Liu Y, Ni JH, Zhang ZM, Huang YQ, Xu GB, Yang Z, Zhang XC et al: An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact Mater 2022, 16:162-172.
70. Du T, Xiao ZH, Cao JL, Wei LF, Li CQ, Jiao JB, Song ZY, Liu JF, Du XJ, Wang S: NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds. Acta Biomater 2022, 145:88-105.
71. Gao G, Jiang YW, Jia HR, Wu FG: Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019, 188:83-95.
72. Qiao Y, Ping Y, Zhang HB, Zhou B, Liu FY, Yu YH, Xie TT, Li WL, Zhong DN, Zhang YZ et al: Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS Appl Mater Interfaces 2019, 11(4):3809-3822.
73. Yuan Z, Tao BL, He Y, Mu CY, Liu GH, Zhang JX, Liao Q, Liu P, Cai KY: Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials 2019, 223:15.
74. Zhu YW, Xu C, Zhang N, Ding XK, Yu BR, Xu FJ: Polycationic Synergistic Antibacterial Agents with Multiple Functional Components for Efficient Anti-Infective Therapy. Adv Funct Mater 2018, 28(14):11.
75. Dobrucka R, Dlugaszewska J: Antimicrobial activity of the biogenically synthesized core-shell Cu@Pt nanoparticles. Saudi Pharm J 2018, 26(5):643-650.
76. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y: DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008, 233(3):404-410.
77. Katas H, Lim CS, Nor Azlan AYH, Buang F, Mh Busra MF: Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J 2019, 27(2):283-292.
78. Hayden SC, Zhao G, Saha K, Phillips RL, Li X, Miranda OR, Rotello VM, El-Sayed MA, Schmidt-Krey I, Bunz UH: Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J Am Chem Soc 2012, 134(16):6920-6923.
79. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000, 52(4):662-668.
80. Shanmugasundaram T, Balagurunathan R: Bio-directed synthesis, structural characterisation of platinum based metal nanocomposites (Pt/Ag, Pt/Au, Pt/Ag/Au) and their biomedical applications. Mater Res Express 2018, 5(9):8.
81. Yarin AL, Koombhongse S, Reneker DH: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 2001, 90(9):4836-4846.
82. Reneker DH, Yarin AL: Electrospinning jets and polymer nanofibers. Polymer 2008, 49(10):2387-2425.
83. Rujitanaroj PO, Pimpha N, Supaphol P: Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 2008, 49(21):4723-4732.
84. Thompson CJ, Chase GG, Yarin AL, Reneker DH: Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48(23):6913-6922.
85. Ahmadian S, Ghorbani M, Mahmoodzadeh F: Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol 2020, 162:1555-1565.
86. Lan X, Liu Y, Wang Y, Tian F, Miao X, Wang H, Tang Y: Coaxial electrospun PVA/PCL nanofibers with dual release of tea polyphenols and epsilon-poly (L-lysine) as antioxidant and antibacterial wound dressing materials. Int J Pharm 2021, 601:120525.
87. Yang S, Han X, Jia Y, Zhang H, Tang T: Hydroxypropyltrimethyl Ammonium Chloride Chitosan Functionalized-PLGA Electrospun Fibrous Membranes as Antibacterial Wound Dressing: In Vitro and In Vivo Evaluation. Polymers (Basel) 2017, 9(12).
88. Chew SY, Wen Y, Dzenis Y, Leong KW: The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 2006, 12(36):4751-4770.
89. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH: Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 2004, 34(4):249-256.
90. Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, Hadjiargyrou M: Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 2004, 98(1):47-56.
91. Chew SY, Mi R, Hoke A, Leong KW: Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater 2007, 17(8):1288-1296.
92. Contreras-Caceres R, Cabeza L, Perazzoli G, Diaz A, Lopez-Romero JM, Melguizo C, Prados J: Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials (Basel) 2019, 9(4).
93. Chew SY, Mi R, Hoke A, Leong KW: The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008, 29(6):653-661.
94. Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA: Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng C Mater Biol Appl 2019, 94:1102-1124.
95. Zahedi P, Fallah-Darrehchi M: Electrospun Egg Albumin-PVA Nanofibers Containing Tetracycline Hydrochloride: Morphological, Drug Release, Antibacterial, Thermal and Mechanical Properties. Fiber Polym 2015, 16(10):2184-2192.
96. Beck-Broichsitter M, Thieme M, Nguyen J, Schmehl T, Gessler T, Seeger W, Agarwal S, Greiner A, Kissel T: Novel 'Nano in Nano' Composites for Sustained Drug Delivery: Biodegradable Nanoparticles Encapsulated into Nanofiber Non-Wovens. Macromol Biosci 2010, 10(12):1527-1535.
97. Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG: Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022, 17:4137-4162.
98. DJS-7900F Schottky Field Emission Scanning Electron Microscope [https://www.jeol.co.jp/en/products/detail/JSM-7900F.html]
99. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S: Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14(9):563-575.
100. Banerjee B, Gowda P, Ananda KT: Biofilm Formation and Antibiotic Resistance of S. aureus Strains Isolated from Chronic Traumatic Wounds. J Pure Appl Microbiol 2022, 16(1):424-429.
101. Eming SA, Martin P, Tomic-Canic M: Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014, 6(265):16.
102. Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ: Nanomaterials in Wound Healing and Infection Control. Antibiotics-Basel 2021, 10(5):19.
103. Sultana S, Bishayi B: Etoposide-mediated depletion of peripheral blood monocytes post s. aureus infection attenuates septic arthritis by modulating macrophage-derived factors responsible for inflammatory destruction. Immunol Lett 2020, 220:51-62.
104. Ge XB, Yan XL, Wang RY, Tian F, Ding Y: Tailoring the Structure and Property of Pt-Decorated Nanoporous Gold by Thermal Annealing. J Phys Chem C 2009, 113(17):7379-7384.
105. Zhao Y, Zhang WQ, Yin HM, He J, Ding Y: Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim Acta 2018, 274:9-15.
106. Ye WC, Kou HH, Liu QZ, Yan JF, Zhou F, Wang CM: Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrog Energy 2012, 37(5):4088-4097.
107. Xiao F, Mo ZR, Zhao FQ, Zeng BZ: Ultrasonic-electrodeposition of gold-platinum alloy nanoparticles on multi-walled carbon nanotubes - ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite. Electrochem Commun 2008, 10(11):1740-1743.
108. Shukla S, Seal S: Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nanostruct Mater 1999, 11(8):1181-1193.

無法下載圖示 全文公開日期 2032/09/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE