簡易檢索 / 詳目顯示

研究生: 范鴻達
Hung-Ta Fan
論文名稱: 受鹽害腐蝕之鋼筋混凝土橋梁長期耐震行為
Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 林英俊
Ying-Chun Lin
邱建國
Chien-Kuo chiu
王仲宇
Chung-Yu Wang
宋裕祺
Yu-Chi Sung
廖國偉
Kuo-Wei Liao
張國鎮
Kuo-Chun Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 鋼筋混凝土橋梁鋼筋的腐蝕側推耐震能力評估橋梁崩塌地表加速度PGA值
外文關鍵詞: reinforced concrete bridges, yield PGA, collapse PGA
相關次數: 點閱:420下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究建置了一套考慮鋼筋混凝土在受到鹽害情況下之側推耐震能力評估模型,並將鋼筋的腐蝕程度對結構桿件強度耐震能力的影響考慮進去。最後建立了鋼筋混凝土橋梁降伏及崩塌地表加速度與服務時間和腐蝕程度間之關係。本研究側推模式之特點有:1.考慮橋柱非線性行為:混凝土、鋼筋組成律非線性之行為。2.整體結構側力行為符合規範精神。3.考慮軸力變化影響。4.考慮鹽害對混凝土劣化的影響。5.建立劣化對保護層混凝土、核心混凝土、縱向鋼筋、橫向鋼筋、與握裹強度彼此之影響關係分析模式。6.考慮撓曲與剪力破壞包絡強度。7.側推分析模型程式化。根據本研究所建置之側推耐震能力評估模型,將台灣各種結構類型的橋梁進行分析研究結果顯示,橋梁在離海岸線0至6.5公里內,在其服務時間為2至32年時開始受到氯化物的腐蝕。因為,橋梁的服務壽命約為50,因此,在此服務期間內,離海岸線0至6.5公里內的橋樑,會受到鹽害的影響。研究結果也顯示,橋梁受到鹽害的影響,每10年橋梁的崩塌PGA值會降低約0.61%,其中0.61%為平均值。若再加上1至2個標準偏差後,其值約為0.81至1.01%。因此,我們建議在進行橋梁設計時,橋梁的設計崩塌PGA值需增加約4.05%至5.05%,以確保橋梁在50年服務壽命期間內有足夠的抗震性能,由其是離海岸線0至6.5公里內的橋樑。


This work presents a new seismic evaluation methodology for corroded reinforced concrete bridges based on nonlinear static pushover analysis. Corrosion of steel reinforcement by chloride attack is considered. At the material level, the effects of corrosion are considered by modeling the degradation of the mechanical properties of steel reinforcement, softening of cover concrete under compression, degradation of core concrete due to confinement steel corrosion, and reduction of bond strength between concrete and steel reinforcement. At the structural level, the effects of corrosion on both flexural behavior and shear behavior, and their interaction are considered.Eleven bridges of various structural types in Taiwan that are located within 6.5 km of their nearest coastline are analyzed to identify their long-term seismic performance. Relationships between the yield and collapsepeak groundaccelerations (PGAs), and service time and corrosion level are established for each bridge. Analysis results show that chloride corrosion starts in 2–32 years. The transverse steel reinforcement typically starts corroding before the longitudinal steel reinforcement, as the former has a thicker cover. Research results show that collapse PGA reduces by 0.81 or 1.01% per 10 years when the mean value plus 1 or2 standard deviation of the collapse PGA values are considered, respectively. Therefore, we suggest increasing the design PGA from 4.05% to 5.05% for a bridge adjacent to a coastline to ensure adequate long-term seismic performance for 50 years, the typicaldesign life span of a regular bridge.

摘要 II Abstract III 致謝 IV 目錄 V 符號索引 I 表索引 II 圖索引 IV 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 4 1.3研究內容及範圍 4 第二章側推分析相關理論介紹 8 2.1混凝土材料模型 8 2.2 鋼筋材料模型 11 2.3 鋼筋腐蝕對鋼筋混凝土構件力學性質之影響 11 2.4 鋼筋腐蝕程度與服務時間及環境之關係 13 2.5 鋼筋腐蝕對保護層混凝土之影響 16 2.6 鋼筋腐蝕對鋼筋材料性質之影響 18 2.7 鋼筋腐蝕對核心混凝土之影響 19 2.8 鋼筋腐蝕對鋼筋握裹性質之影響 20 2.9斷面破壞模式 23 2.10塑鉸破壞模式之判定 26 2.11容量曲線與容量震譜曲線 30 2.12位移-加速度曲線 31 第三章側推分析與殘餘能力評估 36 3.1.橋梁側推分析流程圖 36 3.2橋梁側推分析範例 40 3.3材料強度與結構模型 41 3.4橋柱斷面強度 47 3.5塑性鉸之計算破壞模式判定 49 3.6塑性鉸之計算破壞模式判定 53 3.7容量曲線與容量震譜曲線 56 3.7.1 行車向(X向)側推曲線 56 3.7.2 垂直行車向(Y向)側推曲線 57 3.8位移-加速度曲線(Ac、Ay 之求取) 58 第四章結論與建議 62 4.1橋梁殘餘能力側推分析結果 62 4.2結論與建議 78 參考文獻 80

【1】 張荻薇、宋裕祺、蔡益超,交通部新頒“公路橋梁耐震設計規範”之探討,結構工程第十卷第三期,民國84 年9 月,pp. 3-21。
【2】 張民岦,橋梁耐震能力之評估,國立台灣大學土木工程研究所碩士論文,蔡益超教授指導,民國八十五年六月。
【3】 蔡益超、張荻薇、曾榮川、洪曉慧,橋梁耐震能力評估與補強,土木技術第四卷第三期,2001 年3 月,pp.122-134。
【4】 楊斯如,學校建築結構耐震行為詳細評估,國立台灣大學土木工程研究所碩士論文,蔡益超教授指導,民國九十二年六月。
【5】 宋裕祺、蔡益超,橋梁結構性能耐震設計,結構工程第一九卷第一期,民國九十三年三月,pp.41-73。
【6】 陳彥豪,基礎裸露橋梁耐震能力評估,國立台灣大學土木工程研究所碩士論文,蔡益超教授指導,民國九十四年六月。
【7】 交通部技術標準規範公路類公路工程部,「公路橋梁耐震設計規範」,交通部頒佈,幼獅文化事業公司出版,民國九十七年十一月。
【8】 Sung, Y.C., Liu, K.Y., Su, C.K., Tsai, I.C., and Chang,K.C., (2005). A study on pushover analyses of reinforced concrete columns. Journal of Structural Engineering and Mechanics, 21 (1), 35–52.
【9】 Sung, Yu-Chi , Huang, Chao-Hsun , Liu, Kuang-Yen , Wang, Chuan-Huei,Su,Chin-Kuo,Chang,Kuo-Chun(2010).”Life-cycle evaluation of deteriorated structural performance of neutralised reinforced concrete bridges”, Structure and Infrastructure Engineering, 6: 6,741 — 751.
【10】 Sung, Y.-C. and C.-K. Su (2011). "Time-dependent seismic fragility curves on optimal retrofitting of neutralised reinforced reinforced concrete bridges." Structure and Infrastructure Engineering.,7(10): 797-805.
【11】 交通部公路總局,「公路橋梁耐震能力評估及補強工程可行性研究」,台北市,台灣,2009。
【12】 J.B. Mander, M.J.N. Priestly, and R. Park, “Seismic Design of Bridge Piers”, Report 84-2, Department of Civil Engineering, University of Canterbury, Christ-church, New Zealand, 1984.
【13】 J.B. Mander, M.J.N. Priestly, and R. Park, “Theoretical Stress-Strain Model for Confined Concrete”, Journal of Structural Engineering, ASCE, Vol. 114, NO. 8, pp. 1804-1826, August 1988.
【14】 Lee, H-S., and Cho, Y-S. (2009). ”Evaluation of mechanical properties of steel reinforcement embedded in concrete speciment as a function of the degree of reinforced corrosion.” International Journal Fract., 157, 81-88.
【15】 Choe, D-E., Gardoni, P., Rosowsky, D., and Haukaas, T. (2008). “Probabilistic capacity models and seismic fragility estimares for RC columns.” Reliability Engineering and System Safety., 93, 383-393.
【16】 KumarR, Gardoni P, Silva MS.Effect of cumulative seismic damage and corrosion on the life cycle cost ofreinforced concrete bridges. Earthquake Engineering and Structural Dynamic 2009;38(7):887–905.
【17】 Hsu, Thomas T. C. (1993). “Unified theory of reinforced concrete.” CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida, 334.
【18】 Coronelli, D., and Gambarova, P. (2004). “Structural assessment of corroded reinforcement concrete beams: Modeling guidelines.” Journal of Structure Engineering ASCE., 138(8), 1214-1224.
【19】 Yamamoto, T., and Kobayashi, K. (2006). ” Report of research project on structural performance deteriorated concrete structure by JSCE 331 – Review of experimental study-.” Proc of Int Workshop on Life Cycle Management of Costal Concrete Structure., 171-176., Nagaoka, Japan.
【20】 Al-Sulaimani, G. J., Kaleemullah, M., Basunbul, I. A., and Rasheeduzzafar. (1990).“Influence of corrosion and cracking on bond behaviorand strength of reinforced concrete members.” ACI Struct. J., 87(2),220–231.
【21】 Chung, L., Cho, S. H., Kim, J. H. J., and Yi, S. T. (2004). “Correctionfactor suggestion for ACI development length provisions based onflexural testing of RC slabs with various levels of corroded reinforcingbars.” Eng. Struct., 26(8), 1013–1026.
【22】 Rodriguez, J., Ortega, L. M., and Casal, J. (1997). “Load carrying capacityof concrete structures with corroded reinforcement.” Constr. Build.Mater., 11(4), 239–248.
【23】 Bhargacva, K., Ghosh, A. K., Yasuhiro, M., and Ramanujam, S. (2008). “Suggested empirical model for corrosion-induced bond degradation in reinforced concrete.” Journal of Structure Engineering ASCE., 134(2), 221-230.
【24】 Computer and Structures, Inc.,SAP2000:Integrated Finite Element Analysis and Design of Structures, Version 7.0, Berkeley, California, USA, 1998.
【25】 Computer and Structures, Inc., SAP2000:Integrated finite element analysis and design of structures, Version 14, Berkeley, California,USA, 2010.
【26】 XTRACT User Manual, Imbsen and Associates, Inc., Berkeley, CA, USA, 2006.
【27】 Comite Euro-International du Beton (CEB). CEB-FIP Model Code-Design Code. Thomas Telford, London, UK, 1990.
【28】 Priestley, M.J.N., Verma, R. and Xiao, Y., “Seismic shear strength of reinforced concrete columns,” Journal of Structural Engineering, ASCE, Vol. 120(8), pp. 2310-2329, 1994.
【29】 Aschheim, M., Moehle, J.P. and Werner, S.D., “ Deformability of Concrete Columns“, Project report under contract No.59Q122, California Department of Transportation, Div. of structures, Sacramento, Calif., June, 1992.
【30】 ATC 40, “Seismic Evaluation and Retrofit of Concrete Buildings”, Volume 1, Applied Technology Council, Redwood City, California, 1996.

QR CODE