簡易檢索 / 詳目顯示

研究生: 張瑞堂
Ruei-tang Zhang
論文名稱: 軸狀零件之鍛造製程分析
Analysis on Forging Process of Spindle Shaft Parts
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-hai Hsiang
陳聰嘉
Tsung-chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 冷鍛有限元素法分析DEFORM-3D
外文關鍵詞: cold-forging, finite element analysis, DEFROM-3D
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今國內專注於鍛造高強度零件之廠商甚多,但多數廠商皆以其經驗設計其鍛品之製程。本文將以軸狀零件鍛造加工為例,進行加工製程設計之理論分析起始,進而規劃零件整體之製程,包括工程道次之規劃、加工負荷之擬定、模具之設計等。本研究藉由電腦輔助設計(CAD,computer aided design)與電腦輔助工程(CAE,computer aided engineering)的方法,並透過有限元素分析法(FEM,finite element method)套裝軟體DEFORM-3D來進行軸狀零件之冷鍛製程應力模擬分析,進而縮短實際試模時間與快速掌握成形之條件與製程參數。藉由軸狀零件鍛造製程模擬之分析,獲得軸狀零件於加工時所需之工程道次、加工負荷,判斷出合理之加工時所需之製程。此外,亦設計第一道次鍛造模具進行實驗,並將實驗結果與數值模擬作與驗證,以達到數值模擬分析之可信性。期盼此研究之成果能夠提供廠商作為範例,累積軸狀零件鍛造加工之經驗,縮短產品開發之製程,進而提升產業之競爭力。


Nowadays, many forging companies are dedicated to develop the high strength parts. Most of them performed the manufacturing process empirically instead of theoretically. This research presents a complete forging process by means of numerical and experimental studies based on shaft forming. Analysis material flow and stress/strain distribution, finite element method (FEM) was carried out. This will decrease the time of mold testing and grasp the forming conditions and process parameter rapidly. Moreover, the punch load in multistage process and manufacturing parameters were also discussed.
A set of forming die is designed for these experiments. The experimental results of which were made in comparison with the simulation results. The results of both after compensation were accurate. Hope manufactures could apply the results of this research in accumulating the experiences of shaft forging manufacturing.

摘 要..................................I ABSTRACT................................II 致 謝..................................III 符號索引................................IV 目 錄..................................VI 圖目錄..................................X 表目錄..................................XIII 第一章 緒論...........................1 1.1 前言..............................1 1.2 文獻回顧..........................4 1.3 研究目的..........................7 1.4 論文架構..........................9 第二章 鍛造加工之方法.................10 2.1 鍛造成形加工之介紹................10 2.1.1 依模具型式分類...................10 2.1.2 依工作溫度形式分類...............11 2.2 加強環.............................13 第三章 塑性力學之理論.................15 3.1 塑性力學之介紹....................15 3.1.1 力學解析的目的...................15 3.1.2 塑流應力.........................15 3.1.3 真實應力與真實應變...............16 3.1.4 應力應變方程式...................18 3.2 金屬之降伏條件....................20 3.2.1 材料的塑性法則與性質.............20 3.2.2 塑性流動法則.....................21 3.2.3 加工硬化、等效應力與等效應變.....22 3.3 剛塑性理論........................25 3.4 邊界條件..........................28 3.5 摩擦效應..........................29 第四章 有限元素分析軟體...............31 4.1 有限元素法之簡介..................31 4.2 DEFORM簡介........................32 4.3 軟體架構..........................34 4.3.1 前處理器.........................34 4.3.2 主程式求解器.....................35 4.3.3 後處理器.........................36 4.4 DEFORM使用流程....................37 第五章 數值分析與實驗操作.............40 5.1 材料參數..........................40 5.2 電腦數值模擬解析方法與步驟........40 5.3 軸狀零件加工數值模型..............41 5.4 實驗方法..........................43 5.4.1 實驗設備.........................43 5.4.2 實驗材料之退火與潤滑處理.........44 5.4.3 模具組...........................44 5.4.4 實驗流程規劃.....................45 第六章 實驗結果與探討..................70 6.1 雙重塑性流動對成形性之影響.........70 6.2 皮膜化處理對成形性之影響...........74 6.3 實驗結果之彙總.....................75 6.4 成形負荷比較.......................76 第七章 結論與建議......................77 7.1 結論...............................77 7.2 未來研究之展望.....................78 參考文獻................................79 作者簡介................................83

1.Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic Stress Strain Matrix and
Its Application for The Solution of Elastic-Plastic Problems by Finite
Element Method,” International Journal of Mechanics Sicence, Vol. 10, pp.
343-354(1968).
2.H. D. Hibbit, P. V. Marcal and J. R. Rice, “A Finite Element Formulation
for Problem of Large Strain and Large Displacement,” International Journal
for Solids and Structure, Vol. 6, pp. 1069-1086(1970) .
3.S. Wifi, “Studies on Large Strain Elasto-Plasticity and Finite Element
Analysis of Deformation Processes,” Doctor Thesis, The University of Tokyo,
June (1978).
4.R. M. McMeeking and J. R. Rice, “Finite-Element Formulations for Problems
of Large Elastic-Plastic Deformation,” International Journal for Solids and
Structure, Vol. 11, pp. 601-616(1975).
5.A. Makinouchi, H. Ogawa and Y. Tozawa, “Simulation of Sheet Bending 
Processes Elastic-Plastic Finite Element Method,” CIRP, Vol. 38, pp. 23-31
(1976).
6.S. Wifi, “ Incremental Complete Solution of The Stretch Forming and Deep-
Drawing of a Circular Bank Using a Hemispherical Punch,” International
Journal of Mechanics Sicence, Vol. 18, pp. 23-31 (1976) .
7.Y. Yamada and T. Hirakawa, “Lange Deformation and Instability Analysis of
Metal Forming Process,” Application of Numerical Methods to Metal Forming
Process, ASME, AND-28, pp. 27-38 (1978) .
8.G. Maccarini, C. Giardini and A. Bugini, “Extrusion Operations:FEM Approach
and Experimental Results,” Journal of Materials Processing Technology, Vol.
24, pp. 395-402(1990).
9.S. I. Oh, W. T. Wu and J.P. Tang, “Simulations of Cold Forging Processes by
the DEFORM System,” Journal of Materials Processing Technology, Vol. 35,
pp. 357-370(1992) .
10.T. Altan and M. Knoerr, “Application of The 2D Finite Element Method to
Simulation of Cold-forging Processes,” Journal of Materials Processing
Technology, Vol. 35, pp. 275-302(1992).
11.M. Knoerr, K. Lange and T. Altan, “Fatique Failure of Cold Forging
Tooling : Causes and Possible Solutions Through Fatique Analysis,” Journal
of Materials Processing Technology, Vol. 46, pp. 57-71 (1994).
12.E. Taupin, J. Breitling, W. T. Wu and T. Altan, “Material Fracture and
Burr Formation in Blanking Results of FEM Simulations and Comparison with
Experiments,” Journal of Materials Processing Technology, Vol. 59, pp. 68-
78(1996).
13.G. C. Wang, G. Q. Zhao, X. H. Huang and Y. X. Jia, “Analysis and Design of
a New Manufacturing Process for Support Shaft Using The Finite Element
Method,” Journal of Materials Processing Technology, Vol. 12, pp. 1259-264
(2002) .
14.V. Vazquez and T. Altan, “New Concepts in Die Design Physical and Computer
Modeling Applications,” Journal of Materials Processing Technology, Vol.
98, pp. 212-223(2000) .
15.J. Groenbaek and T. Birker, “Innovations in Cold Forging Die Design,”
Journal of Materials Processing Technology, Vol. 98, pp. 155-161 (2000) .
16.Y. C. Lee and F. K. Chen, “Fatigue Life of Cold-forging Dies with Various
Values of Hardness,” Journal of Materials Processing Technology, Vol. 113,
pp. 539-543(2001).
17.Y. C. Hae, S. M. Gyu, Y. J. Chang and H. K. Myung, “Process Design of The
Cold Forging of a Billet by Forward and Backward Extrusion,” Journal of
Materials Processing Technology, Vol. 135, pp. 375–381 (2003).
18.Y. Nagao, M. Knoerr, and T. Altan, “Improvement of Tool Life in Cold
Forging of Complex Automotive Parts,” Journal of Materials Processing
Technology, Vol. 46, pp. 73-85 (1994).
19.K. D. Hur, Y. Choi and H. T. Yeo, “A Design Method for Cold Backward
Extrusion Using FE Analysis,” Finite Elements in Analysis and Design, Vol.
40, pp. 173-185(2003).
20.Y. Lee, J. Lee, Y. Kwon and T. Ishikawa, “Modeling Approach to Estimate
Theelastic Characteristics of Workpiece and Shrink-fitted Die for Cold
Forging,” Journal of Materials Processing Technology, Vol. 147, pp. 102-110
(2004).
21.許源泉,“鍛造學 理論與實習”,三民書局,民國79年。
22.黃新春,“冷鍛模具設計手冊”,金屬工業研究發展中心,民國79年。
23.S. Kobayashi, S. I. Oh and T. Altan, “Metal Forming and The Finite Element
Method,” Oxford university press, New York (1989).
24.山田嘉昭編著,“非線性有限元素法基礎”,亞東書局,(1985)。
25.T. J. Douthit and C. J. Van Tyne, “The Effect of Nitrogen on The Cold
Forging Properties of 1020 Steel,” Journal of Materials Processing
Technology, pp. 335-347(2005) .
26.王祥南,“球座接頭雙軸向複動化冷鍛模組設計分析研究”,國立高雄第一科技大學,碩士論文,民國97年。

無法下載圖示 全文公開日期 2016/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE