簡易檢索 / 詳目顯示

研究生: 羅偉翔
Wei-Hsiang Lo
論文名稱: 非線性無橋降壓型功率因數修正器之研製
Study and Implementation of a Non-linear Gain Bridgeless Buck Power Factor Corrector
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 呂錦山
Ching-Shan Leu
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 135
中文關鍵詞: 箝位電流模式功率因數修正非線性無橋降壓型功率因數修正器
外文關鍵詞: clamped current mode, power-factor-correction, non-linear gain bridgeless buck PFC
相關次數: 點閱:380下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要係研製一操作於箝位電流模式之非線性無橋降壓型轉換器,並應用於功率因數修正上。當輕載時會操作在不連續導通模式,降低功率開關的切換損耗;重載時操作在連續導通模式,電感電流峰值電流較低,降低功率元件的導通損耗。透過模擬軟體Simplis進行電路模擬分析與運算軟體 Mathcad進行數學式計算總諧波失真表現,以驗證論文中所提之分析與設計考量是否正確。當降壓型架構使用於功率因數修正器情況下,當輸入電壓低於輸出電壓,輸入端無法流通電流,造成無法達成適當的總諧波失真與功率因數值。而透過非線性架構,使輸入電流兩側更容易追隨輸入電壓波形,有助於改善功因。本論文實際製作一650W之非線性無橋降壓型功率因數修正器,與一650W傳統無橋降壓型功率因數修正器,進行對照分析。最後測量結果證明,非線性架構比傳統架構更可以減少總諧波失真,適合在大功率應用場合。


The purpose of this thesis is to study and implement a non-linear gain bridgeless buck converter operated in clamped current mode and apply it on power factor correction (PFC). Under light-load, the circuit is operated at discontinuous conduction mode (DCM) to reduce switching losses of the power devices; on the other hand, under heavy-load the circuit is operated at continuous conduction mode (CCM) to lower the peak inductor current and hence the conduction losses. Simulations tools Simplis and Mathcad is utilized to verify the correctness and feasibility of the circuit and calculate the total harmonic distortion (THD). As buck converter structure is used for power factor correction (PFC) function, while input voltage is lower than the output voltage, the input terminal provides no current, and therefore unable to achieve satisfying results in terms of total harmonic distortion (THD) and power factor (PF). As for non-linear converter structure, the input current at both sides are able to follow the input voltage waveform more correctly. This feature contribute a lot to improve the power factor. A 650-W non-linear gain bridgeless buck PFC and a conventional 650-W bridgeless buck PFC are implemented in the laboratory for comparison. The measurement results show that the proposed non-linear converter structure outperforms the conventional one on reduction and is more suitable for high power applications.

摘 要 i Abstract ii 誌 謝 iv 目 錄 v 圖目錄 viii 表目錄 xiv 第一章 緒論 1 1.1研究背景與動機 1 1.2論文大綱 3 第二章 無橋降壓型功率因數修正器 5 2.1功率因數與總諧波失真之定義 5 2.2無橋降壓型功率因數修正器架構與原理 9 2.3次諧波振盪介紹 14 2.4無橋降壓型功率因數修正器控制狀態分析 19 2.4.1 斜率補償 24 2.4.2 不連續導通模式 25 2.4.3 連續導通模式 27 2.4.4 操作模式之邊界角度分析 28 2.4.5 誤差電流 29 2.4.6 輸入電流諧波與功率因數 36 2.4.7 斜率補償之斜波電流 37 第三章 非線性無橋降壓型功率因數修正器 41 3.1非線性無橋降壓型功因修正器架構與原理 41 3.2非線性無橋降壓型功因修正器控制狀態分析 46 3.2.1 斜率補償 46 3.2.2 不連續導通模式 47 3.2.3 連續導通模式 47 3.2.4 操作模式之邊界角度分析 48 3.2.5 誤差電流 49 3.2.6 斜率補償之斜波電流 51 3.3箝位電流控制模式分析 55 3.3.1 儲能電感分析 55 3.3.2 輸出電容分析 56 3.3.3 功率元件分析 57 第四章 非線性無橋降壓型功率因數修正器設計流程 59 4.1電路規格制定 59 4.2設計實例與分析 60 4.2.1 電流分析 60 4.2.2 功率元件設計 64 4.2.3 控制電路設計 68 第五章 傳統與非線性無橋降壓型功因修正器模擬比較 71 5.1電路模擬分析 71 5.2總諧波失真分析 75 5.2.1 非線性無橋降壓型功因修正器總諧波失真分析 76 5.2.2 傳統無橋降壓型功因修正器總諧波失真分析 81 5.2.3 傳統與非線性無橋功因修正器總諧波失真比較 86 第六章 實作驗證 87 6.1傳統無橋降壓型功率因數修正器數據與波形 87 6.2非線性無橋降壓型功率因數修正器數據與波形 96 6.3傳統與非線性無橋降壓型功因修正器之實驗結果比較 106 第七章 結論與未來展望 112 7.1結論 112 7.2未來展望 113 參考文獻 115

[1] Limits for Harmonic Current Emissions (Equipment Input Current <16A Per Phase), IEC/EN 61000-3-2, 1995.
[2] B Wilkenson, “Power Factor Correction and IEC 555-2,” Power Techniques Magazine, pp. 20-24, 1991.
[3] A. I. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 2009.
[4] 梁適安,交換式電源供給器之理論與實務設計,修訂版,全華科技圖書股份有限公司,2008年。
[5] Y. Ohnuma and J. I. Itoh, “A Novel Single-Phase Buck PFC AC-DC Converter With Power Decoupling Capability Using an Active Buffer,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 1905-1914, May/June. 2014.
[6] P. Mao and C. Y. Wang, “Boost-Buck Power Factor Correction Converter With Integrated Different Current Control Methods,” IEEE, pp. 826-828, 2013.
[7] H. Choi, “Interleaved Boundary Conduction Mode (BCM) Buck Power Factor Correction (PFC) Converter,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2629-2634, June. 2013.
[8] R. Philip and Sreeja C, “Single Phase PFC Using Buck-Boost Converter” in Proc. International Conference on Magnetics, Machines & Drives, 2014.
[9] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental Studies on Active and Passive PFC Circuits,” IEEE Internationa Telecommunication Energy Conference, pp571-578, 1997.
[10] C. Bing, X. Y. Xiang, H. Feng, and C. J. Hui, “A Novel Single-phase Buck PFC Converter Based on One-cycle Control,” in Proc. IPEMC, 2006.
[11] X. Xie, C. Zhao, L. Zheng, and S. Liu, “An Improved Buck PFC Converter With High Power Factor,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2277-2284, May. 2013.
[12] X. Wu, J. Yang, J. Zhang, and M. Xu, “Design Considerations of Soft-switched Buck PFC Converter With Constant On-time (COT) Control,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3144-3152, Nov. 2011.
[13] L. Huber, L. Gang, and M. M. Jovanović, “Design-oriented Analysis and Performance Evaluation of Buck PFC Front End,” IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 85-94, Jan. 2010.
[14] V. Grigore and J. Kyyrä, “High Power Factor Rectififer Based on Buck Converter Operating in Discontinuous Capacitor Voltage Mode,” IEEE Transactions on Power Electronics, vol. 15, no. 6, pp. 1241-1249, nov. 2000.
[15] X. Wu, J. Yang, J. Zhang, and Z. Qian, “Variable On-time (VOT)-controlled Critical Conduction Mode Buck PFC Converter for High-Input AC/DC HB-LED Lighting Applications,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4530-4539, Nov. 2012.
[16] Texas Instruments Inc, “Power Factor Correction Using the Buck Topology-efficiency Benefits and Practical Design Considerations,” Application Note SLUP264, June. 2010.
[17] 陳育文,交錯式降壓型功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,2013年。
[18] 詹子增,雙模式降壓型功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,2014年。
[19] D. Maksimović, “Design of the Clamped-current High-power-factor Boost Rectifier,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 986-992, Sept. 1995.
[20] L. Huber and M. M. Jovanović, “Design-oriented Analysis and Performance Evaluation of Clamped-current-boost Input-current Shaper for Universal-input-voltage Range,” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 528-537, May. 1998.
[21] F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved Critical Current Mode Boost PFC Converter With Coupled Inductor,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.
[22] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 328-335, April. 2003.
[23] 洪瑞鴻,2kW功率因數修正器研製,國立台灣科技大學電子工程系碩士論文,2005年。
[24] Y. Jang and M. M. Jovanović, “Bridgeless Buck PFC Rectifier,” IEEE, pp.23-29, 2010.
[25] L. Huber, Y. Jang, and M. M. Jovanović, “Performance Evaluation of Bridgeless PFC Boost Rectifiers, ” IEEE Transactions on Power Electronics, Vol. 23, no. 3, pp. 1381-1390, May. 2008.
[26] A. A. Fardoun, E. H. Ismail, N. M. Khraim, A. J. Sabzali, and M. A. Al-Saffar, “Bridgeless High-power-factor Buck-converter Operating in Discontinuius Capacitor Voltage Mode,” IEEE Transactions on Industry Applications, Vol. 50, no. 5, pp.3457-3467, Sept/Oct. 2014.
[27] 劉嘉峻,雙相交錯式無橋降壓型功率因數修正器之研製,國立台灣科技大學碩士論文,2013年。
[28] Hong Yang Electronics Co., “GBJ2506 Bridge Rectifers,” Data Sheet.
[29] Infineon, Inc., “IPW60R099CP CoolMOS Power Transistor,” Data Sheet, 2007.
[30] Cree, Inc., “C3D06060 Silicon Carbide Schottky Diode,” Data Sheet, 2013.
[31] Texas Instruments Inc, “UC384X Current Mode PWM Controller,” Data Sheet, April. 1997.
[32] 賴奐旭,非線性轉換比降壓型功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,2014年。

QR CODE