簡易檢索 / 詳目顯示

研究生: Amanu Nigusie
Amanu Nigusie
論文名稱: 設計奈米複合催化劑用於光電化學產氫
Designing Nanocomposite Catalysts for Photoelectrochemical Hydrogen Evolution
指導教授: 今榮東洋子
Toyoko Imae
氏原真樹
氏原真樹
口試委員: 今榮東洋子
Toyoko Imae
張裕煦
Yu-Hsu Chang
吳紀聖
Chi-Sheng Wu
氏原真樹
Masaki Ujihara
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 電漿震盪子析氫反應光子光電催化銀枝狀奈米線奈米複合材料過電位起始電位電流密度塔菲爾圖電荷分離化學浴沉積熱電子異質結電沉積
外文關鍵詞: plasmonic, hydrogen evolution reaction, photon, photoelectrocatalytic, Ag branched nanowire, nanocomposite, overpotential, onset potential, current density, Tafel plot, charge separation, chemical bath deposition, hot electron, stocky barrier, electrodeposition
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

可見光驅動的催化反應因其能夠將豐富的太陽能轉化為可利用的化學能,尤其是環保的氫能而廣受關注。因此,為了能提升光電催化效率,嘗試開發電漿震盪子奈米材料和耦合過渡金屬硫化物異質結構。在這項研究中,電漿震盪子奈米材料—枝狀奈米銀線/鉑/氯化銀,通過電化學沉積法合成後,以浸塗法處理。至於耦合過渡金屬硫化物—二硫化鎳/八硫化九鈷/硫化二銅異質結構膜是由一個簡單的一步化學浴沉積法,以產生更多的高能熱電子系統,藉以促進電荷載體轉移。合成材料的形態特徵由掃描式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM)確定。樣品的特徵以XRD測定,通過能量分散光譜法和X射線光電子光譜法對樣品的元素組成進行分析。光學特性通過紫外線可見光光譜分析。然後,通過可見光驅動的析氫反應表現評估銀奈米線/鉑/氯化銀奈米複合物的光電觸媒活性與二硫化鎳/八硫化九鈷/硫化二銅的光電分析。實驗表明,枝狀奈米銀線/鉑/氯化銀奈米複合物表現出的效率高於枝狀奈米銀線和枝狀奈米銀線/鉑等其他複合材料。但是,過高的氯化銀濃度會降低此複合材料的活性。這是由於過厚的氯化銀半導體層阻礙了光線穿透因而降低其吸收效率。此外,二硫化鎳/八硫化九鈷/硫化二銅的三元異構體展現出與在可見光照射和全黑條件下的單元相比較低的過電位 。這種趨勢可以通過異質結的形成來解釋,該異質結減少了與電洞的結合促進了電子轉移並產生更多的活性點。此外,通過迴圈測試,來對銀奈米線/鉑/氯化銀和二硫化鎳/八硫化九鈷/硫化二銅膜的穩定性進行了試驗,且其皆保持了良好的穩定性。這些研究結合了不同的工程策略,提出了異質奈米晶體的設計和發展。


Visible light-driven catalytic reactions have received widespread attention because of the ability of converting abundant solar energy into accessible chemical energy, especially the clean H2 energy source. Consequently, to improve the photo-electrocatalytic efficiency, plasmonic nanomaterials and coupled transition metal sulfide heterostructures have been developed. In this study, we designed two nanocomposites: (1) plasmonic material (Ag branched nanowire: AgBW) hybridized with Pt catalyst and (2) coupled transition metal sulfide. First, the plasmonic nanocomposite, AgBNW/Pt/AgCl was synthesized by electrodeposition and followed by dip coating processes. Second, the coupled transition metal sulfides (NiS2/Co9S8/Cu2S) were fabricated by a simple one-step chemical bath deposition to form heterostructures films. For these nanocomposites, the morphologies were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); the crystal structures were characterized by x-ray diffraction (XRD); the elemental composition were analyzed by energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS); the optical properties were analyzed by UV-visible diffuse spectroscopy. Then, photoelectrocatalytic activities of the AgBNW/Pt/AgCl and the NiS2/Co9S8/Cu2S heterostructures were evaluated by the performance of electrochemical hydrogen evolution reaction under visible light irradiation. The AgBNW/Pt/AgCl exhibited the higher efficiency to decrease the overpotential than AgBNW and AgBNW/Pt when the AgCl was properly deposited. The AgCl layer prevented the recombination of electron-hole pairs, but the AgBNW was corroded during the AgCl deposition. The NiS2/Co9S8/Cu2S heterostructures exhibited lower overpotential compared to the single components both under visible light irradiation and in dark conditions. This behavior was explained by the heterojunction formation that reduced the electron-hole recombination, facilitated the electron transfer, and generated more active sites. Moreover, the stability of AgBNW/Pt/AgCl and NiS2/Co9S8/Cu2S films were investigated by the cyclic tests and exhibited good stability. These study presents an approach how to design and develop heterogeneous nanocomposites by combining different engineering strategies.

Table of Contents 緒論 i Abstract ii List of figures vii List of schemes x List of Tables xi List of Abbreviations xii CHAPTER 1. General Introduction 1 1.1 Background 1 1.2. Principles of photoelectrochemical hydrogen production 3 1.3. Strategies to improve the photoelectrocatalytic efficiency 6 1.3.1. Plasmonic metal/semiconductor photocatalysts 6 1.3.2. Semiconductor/semiconductor Heterojunctions 11 1.3.3. Co-catalyst 12 1.3.4. Tafel plot analysis 13 1.4. Aim of this study 14 Chapter 2. Experimental Part 16 2.1. Research design 16 2.2. Materials and reagents 17 2.3. Synthesis Methods of Nanomaterials 17 2.3.1. Electrochemical deposition 17 2.3.2. Galvanic Displacement Method 18 Scheme 2. 2. Galvanic displacement method 19 2.3.2. Chemical bath deposition method 19 2.4. Materials Characterization techniques 20 2.4.1. X-ray Diffraction (XRD) 20 2.4.2. Scanning electron microscopy (SEM) 20 2.4.3. High-resolution transmission electron microscopy (HRTEM) 21 2.4.4. X-ray photoelectron spectroscopy (XPS) 21 2.4.5. UV-vis diffuse reflectance spectroscopy 21 2.5. Electrochemical characterizations 22 2.5.1. Photoelectrocatalytic activity 22 2.4.2. Cyclic Voltammetry (CV) 23 2.4.3. Electrochemical impedance spectroscopy (EIS) 23 2.5.4. Mott–Schottky plot 24 CHAPTER 3. Plasmon-Enhanced Hydrogen Evolution Reaction on Ag-Branched-Nanowire/Pt Nanoparticle/AgCl Nanocomposites 25 3.1. Abstract 25 3.2. INTRODUCTION 26 3.3. Experimental Section 27 3.3.1. Synthesis of AgBNWs 27 3.3.2. Synthesis of the AgBNW/PtNP/AgCl nanocomposite 28 3.3.3. Synthesis of Ag/Pt bimetals 28 3.4. Results and Discussion 29 3.4.1. Characterization of the AgBNW/PtNP/AgCl and AgNW/Pt nanocomposite 29 3.4.2. Photoelectrochemical measurements 39 3.5. Conclusion 50 CHAPTER 4. One-step synthesis of NiS2/Co9S8/Cu2S hybrid nanocrystals for Photo-electrochemical and Electrochemical hydrogen generation 52 4.1. Abstract 52 4.2. INTRODUCTION 53 4.3. Experimental section 54 4.3.1. Synthesis of NiS2/Co9S8/Cu2S heterostructures 54 4.4. Results and Discussion 55 4.4.1. Characterization of as-synthesized nanomaterials 55 4.4.2. Photo-electrochemical measurements 61 4.5. Conclusions 68 Chapter 5. General conclusion and future scopes 70 5.1. General Conclusion 70 5.2. Future scopes 72 References 73

1. Acar, C.; Dincer, I., Impact Assessment and Efficiency Evaluation of Hydrogen Production Methods. International Journal of Energy Research 2015, 39, 1757-1768.
2. Tan, P.; Liu, Y.; Zhu, A.; Zeng, W.; Cui, H.; Pan, J., Rational Design of Z-Scheme System Based on 3d Hierarchical Cds Supported 0d Co9s8 Nanoparticles for Superior Photocatalytic H2 Generation. ACS Sustainable Chemistry & Engineering 2018, 6, 10385-10394.
3. Lewis, N. S.; Nocera, D. G., Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences 2006, 103, 15729-15735.
4. Dincer, I.; Acar, C., Review and Evaluation of Hydrogen Production Methods for Better Sustainability. International Journal of Hydrogen Energy 2015, 40, 11094-11111.
5. Ahmed, M.; Dincer, I., A Review on Photoelectrochemical Hydrogen Production Systems: Challenges and Future Directions. International Journal of Hydrogen Energy 2019, 44, 2474-2507.
6. Basu, K.; Zhang, H.; Zhao, H.; Bhattacharya, S.; Navarro-Pardo, F.; Datta, P. K.; Jin, L.; Sun, S.; Vetrone, F.; Rosei, F., Highly Stable Photoelectrochemical Cells for Hydrogen Production Using a Sno2–Tio2/Quantum Dot Heterostructured Photoanode. Nanoscale 2018, 10, 15273-15284.
7. Kemppainen, E.; Halme, J.; Lund, P., Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119, 21747-21766.
8. Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P., Evaluating the Stability of Co2p Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Letters 2018, 3, 1360-1365.
9. Wei, R.-B.; Kuang, P.-Y.; Cheng, H.; Chen, Y.-B.; Long, J.-Y.; Zhang, M.-Y.; Liu, Z.-Q., Plasmon-Enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle Decorated Zno/Cds Nanotube Arrays. ACS Sustainable Chemistry & Engineering 2017, 5, 4249-4257.
10. Liu, G.; Du, K.; Xu, J.; Chen, G.; Gu, M.; Yang, C.; Wang, K.; Jakobsen, H., Plasmon-Dominated Photoelectrodes for Solar Water Splitting. Journal of Materials Chemistry A 2017, 5, 4233-4253.
11. Varadhan, P.; Fu, H.-C.; Kao, Y.-C.; Horng, R.-H.; He, J.-H., An Efficient and Stable Photoelectrochemical System with 9% Solar-to-Hydrogen Conversion Efficiency Via Ingap/Gaas Double Junction. Nature Communications 2019, 10, 5282.
12. Hisatomi, T.; Kubota, J.; Domen, K., Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chemical Society Reviews 2014, 43, 7520-7535.
13. Ganguly, P.; Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C., 2d Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters 2019, 4, 1687-1709.
14. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
15. Chen, Y.; Feng, X.; Liu, M.; Su, J., Towards Eflcient Solar-to-Hydrogen Conversion: Fundamentals and Recent Progress in Copper-Based Chalcogenide Photocathodes. Nanophotonics 2016, 5.
16. Shenoy, S.; Tarafder, K., Enhanced Photocatalytic Efficiency of Layered Cds/Cdse Heterostructures: Insights from First Principles Electronic Structure Calculations. Journal of Physics: Condensed Matter 2020, 32, 275501.
17. Zhang, D.; Shi, J.; Zi, W.; Wang, P.; Liu, S., Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. ChemSusChem 2017, 10, 4324-4341.
18. Vilanova, A.; Dias, P.; Azevedo, J.; Wullenkord, M.; Spenke, C.; Lopes, T.; Mendes, A., Solar Water Splitting under Natural Concentrated Sunlight Using a 200 cm2 Photoelectrochemical-Photovoltaic Device. Journal of Power Sources 2020, 454, 227890.
19. Seitz, L. C.; Chen, Z.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F., Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research. ChemSusChem 2014, 7, 1372-1385.
20. Bae, D.; Seger, B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I., Strategies for Stable Water Splitting Via Protected Photoelectrodes. Chemical Society Reviews 2017, 46, 1933-1954.
21. Yilanci, A.; Dincer, I.; Ozturk, H. K., A Review on Solar-Hydrogen/Fuel Cell Hybrid Energy Systems for Stationary Applications. Progress in Energy and Combustion Science 2009, 35, 231-244.
22. Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J.-W.; Lee, J. S., Toward Practical Solar Hydrogen Production – an Artificial Photosynthetic Leaf-to-Farm Challenge. Chemical Society Reviews 2019, 48, 1908-1971.
23. Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V. M.; Boltasseva, A.; Zbořil, R.; Naldoni, A., Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Advanced Materials 2019, 31, 1805513.
24. Pinaud, B. A., et al., Technical and Economic Feasibility of Centralized Facilities for Solar Hydrogen Production Via Photocatalysis and Photoelectrochemistry. Energy & Environmental Science 2013, 6, 1983-2002.
25. Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P., Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Advanced Materials 2021, 33, 2000086.
26. Jiang, W.; Wu, X.; Chang, J.; Ma, Y.; Song, L.; Chen, Z.; Liang, C.; Liu, X.; Zhang, Y., Integrated Hetero-Nanoelectrodes for Plasmon-Enhanced Electrocatalysis of Hydrogen Evolution. Nano Research 2021, 14, 1195-1201.
27. Yu, G.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W.; Yan, W.; Liu, G., Collective Excitation of Plasmon-Coupled Au-Nanochain Boosts Photocatalytic Hydrogen Evolution of Semiconductor. Nature Communications 2019, 10, 4912.
28. Sato, D.; Minamimoto, H.; Murakoshi, K., Plasmon-Induced Hydrogen Evolution Reaction on P-Type Semiconductor Electrode with Ag Nanodimer Structures. Chemistry Letters 2020, 49, 806-808.
29. Wang, Y.; Zhang, J.; Liang, W.; Qin, W.; Sun, Y.; Jiang, L., Plasmonic Metal Nanostructures as Efficient Light Absorbers for Solar Water Splitting. Advanced Energy and Sustainability Research, n/a, 2100092.
30. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nature Materials 2011, 10, 911-921.
31. Mukherjee, B.; Peterson, A.; Subramanian, V., 1d Cds/Pbs Heterostructured Nanowire Synthesis Using Cation Exchange. Chemical Communications 2012, 48, 2415-2417.
32. Nedrygailov, II; Moon, S. Y.; Park, J. Y., Hot Electron-Driven Electrocatalytic Hydrogen Evolution Reaction on Metal-Semiconductor Nanodiode Electrodes. Sci Rep 2019, 9, 6208.
33. Clavero, C., Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nature Photonics 2014, 8, 95-103.
34. Jana, J.; Ganguly, M.; Pal, T., Enlightening Surface Plasmon Resonance Effect of Metal Nanoparticles for Practical Spectroscopic Application. RSC Advances 2016, 6, 86174-86211.
35. Lian, Z.; Sakamoto, M.; Vequizo, J. J. M.; Ranasinghe, C. S. K.; Yamakata, A.; Nagai, T.; Kimoto, K.; Kobayashi, Y.; Tamai, N.; Teranishi, T., Plasmonic P–N Junction for Infrared Light to Chemical Energy Conversion. Journal of the American Chemical Society 2019, 141, 2446-2450.
36. van Turnhout, L.; Hattori, Y.; Meng, J.; Zheng, K.; Sá, J., Direct Observation of a Plasmon-Induced Hot Electron Flow in a Multimetallic Nanostructure. Nano Letters 2020, 20, 8220-8228.
37. Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X., Engineering Heterogeneous Semiconductors for Solar Water Splitting. Journal of Materials Chemistry A 2015, 3, 2485-2534.
38. Moon, S.; Song, H.; Gwab, E.; Nedrygailov, I.; Lee, C.; Kim, J.; Doh, W. H.; Park, J., Plasmonic Hot Carrier-Driven Oxygen Evolution Reaction on Au Nanoparticles/Tio2 Nanotube Arrays. Nanoscale 2018, 10.
39. Ghobadi, T. G. U.; Ghobadi, A.; Ozbay, E.; Karadas, F., Strategies for Plasmonic Hot-Electron-Driven Photoelectrochemical Water Splitting. ChemPhotoChem 2018, 2, 161-182.
40. Rossi, T. P.; Erhart, P.; Kuisma, M., Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure. ACS Nano 2020, 14, 9963-9971.
41. Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M., An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons. Nature Nanotechnology 2013, 8, 247-251.
42. Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M., Plasmonic Photoanodes for Solar Water Splitting with Visible Light. Nano Letters 2012, 12, 5014-5019.
43. Mondal, I.; Lee, H.; Kim, H.; Park, J. Y., Plasmon-Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting. Advanced Functional Materials 2020, 30, 1908239.
44. Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D., Surface-Plasmon-Driven Hot Electron Photochemistry. Chemical Reviews 2018, 118, 2927-2954.
45. Li, L.; Salvador, P. A.; Rohrer, G. S., Photocatalysts with Internal Electric Fields. Nanoscale 2014, 6, 24-42.
46. Nozik, A. J., Photochemical Diodes. Applied Physics Letters 1977, 30, 567-569.
47. Ma, Z.; Zhao, Q.; Li, J.; Tang, B.; Zhang, Z.; Wang, X., Three-Dimensional Well-Mixed / Highly-Densed Nis-Cos Nanorod Arrays: An Efficient and Stable Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions. Electrochimica Acta 2017, 260.
48. Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S., Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy & Environmental Science 2018, 11, 744-771.
49. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Scientific Reports 2015, 5, 13801.
50. Kuang, P.; Tong, T.; Fan, K.; Yu, J., In Situ Fabrication of Ni–Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide Ph Range. ACS Catalysis 2017, 7, 6179-6187.
51. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie International Edition 2015, 54, 52-65.
52. Zhang, J.; Zhao, L.; Liu, A.; Li, X.; Wu, H.; Lu, C., Three-Dimensional Mos2/Rgo Hydrogel with Extremely High Double-Layer Capacitance as Active Catalyst for Hydrogen Evolution Reaction. Electrochimica Acta 2015, 182, 652-658.
53. Nedrygailov, I. I.; Moon, S. Y.; Park, J. Y., Hot Electron-Driven Electrocatalytic Hydrogen Evolution Reaction on Metal–Semiconductor Nanodiode Electrodes. Scientific Reports 2019, 9, 6208.
54. Liu, M.; Xia, P.; Zhang, L.; Cheng, B.; Yu, J., Enhanced Photocatalytic H2-Production Activity of G-C3n4 Nanosheets Via Optimal Photodeposition of Pt as Cocatalyst. ACS Sustainable Chemistry & Engineering 2018, 6, 10472-10480.
55. Zhang, Y.; Heo, Y.-J.; Lee, J.-W.; Lee, J.-H.; Bajgai, J.; Lee, K.-J.; Park, S.-J., Photocatalytic Hydrogen Evolution Via Water Splitting: A Short Review. Catalysts 2018, 8, 655.
56. Rezaei, B.; Mokhtarianpour, M.; Ensafi, A. A., Fabricated of Bimetallic Pd/Pt Nanostructure Deposited on Copper Nanofoam Substrate by Galvanic Replacement as an Effective Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy 2015, 40, 6754-6762.
57. Ghasemi, S.; Hosseini, S. R.; Nabipour, S., Preparation of Nanohybrid Electrocatalyst Based on Reduced Graphene Oxide Sheets Decorated with Pt Nanoparticles for Hydrogen Evolution Reaction. Journal of the Iranian Chemical Society 2019, 16, 101-109.
58. Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J., Strategies for Enhancing the Photocurrent, Photovoltage, and Stability of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Society Reviews 2019, 48, 4979-5015.
59. Meng, H.; Fan, K.; Low, J.; Yu, J., Electrochemically Reduced Graphene Oxide on Silicon Nanowire Arrays for Enhanced Photoelectrochemical Hydrogen Evolution. Dalton Transactions 2016, 45, 13717-13725.
60. Das, J. K.; Samantara, A. K.; Nayak, A. K.; Pradhan, D.; Behera, J. N., Vs2: An Efficient Catalyst for an Electrochemical Hydrogen Evolution Reaction in an Acidic Medium. Dalton Transactions 2018, 47, 13792-13799.
61. Ingram, D. B.; Linic, S., Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. Journal of the American Chemical Society 2011, 133, 5202-5205.
62. Kawamura, G.; Matsuda, A., Synthesis of Plasmonic Photocatalysts for Water Splitting. Catalysts 2019, 9, 982.
63. Zhang, X.; Liu, Y.; Kang, Z., 3d Branched Zno Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2014, 6, 4480-4489.
64. Wang, J.; Choi, S.; Kim, J.; Cha, S. W.; Lim, J., Recent Advances of First D-Block Metal-Based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts 2020, 10, 770.
65. Zhang, P.; Song, T.; Wang, T.; Zeng, H., Fabrication of a Non-Semiconductor Photocatalytic System Using Dendrite-Like Plasmonic Cuni Bimetal Combined with a Reduced Graphene Oxide Nanosheet for near-Infrared Photocatalytic H2 Evolution. Journal of Materials Chemistry A 2017, 5, 22772-22781.
66. Zhang, Z.; Wang, Z.; Cao, S.-W.; Xue, C., Au/Pt Nanoparticle-Decorated Tio2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of Physical Chemistry C 2013, 117, 25939-25947.
67. Liang, S.; Xia, Y.; Zhu, S.; Zheng, S.; He, Y.; Bi, J.; Liu, M.; Wu, L., Au and Pt Co-Loaded G-C3n4 Nanosheets for Enhanced Photocatalytic Hydrogen Production under Visible Light Irradiation. Applied Surface Science 2015, 358, 304-312.
68. Zhen, W.; Gao, H.; Tian, B.; Ma, J.; Lu, G., Fabrication of Low Adsorption Energy Ni–Mo Cluster Cocatalyst in Metal–Organic Frameworks for Visible Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2016, 8, 10808-10819.
69. Seh, Z. W.; Liu, S.; Low, M.; Zhang, S.-Y.; Liu, Z.; Mlayah, A.; Han, M.-Y., Janus Au-Tio2 Photocatalysts with Strong Localization of Plasmonic near-Fields for Efficient Visible-Light Hydrogen Generation. Advanced Materials 2012, 24, 2310-2314.
70. Méndez-Medrano, M. G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Rau, S.; Colbeau-Justin, C.; Rodríguez-López, J. L.; Remita, H., Surface Modification of Tio2 with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light. The Journal of Physical Chemistry C 2016, 120, 25010-25022.
71. Su, F.; Wang, T.; Lv, R.; Zhang, J.; Zhang, P.; Lu, J.; Gong, J., Dendritic Au/Tio2 Nanorod Arrays for Visible-Light Driven Photoelectrochemical Water Splitting. Nanoscale 2013, 5, 9001-9009.
72. Cai, Y.; Yao, C.; Yuan, J., Enhancement of Photoelectrochemical Performance of Ag@Zno Nanowires: Experiment and Mechanism. Journal of Nanomaterials 2020, 2020, 6742728.
73. Mandawat, N. K.; Sharma, H. S.; Chouhan, N., Nanocomposite Ag@Agcl/Zno for Efficient Hydrogen Generation through Water Splitting. SN Applied Sciences 2019, 1, 571.
74. Jin, H.; Li, J.; Wan, L.; Dai, Y.; Wei, Y.; Guo, H., Ohmic Contact in Monolayer Inse-Metal Interface. 2D Materials 2017, 4, 025116.
75. Brillson, L. J.; Lu, Y., Zno Schottky Barriers and Ohmic Contacts. Journal of Applied Physics 2011, 109, 121301.
76. Boltersdorf, J.; Forcherio, G.; McClure, J.; Baker, D.; Leff, A.; Lundgren, C., Visible Light-Promoted Plasmon Resonance to Induce “Hot” Hole Transfer and Photothermal Conversion for Catalytic Oxidation. The Journal of Physical Chemistry C 2018, 122.
77. Kye, J.; Shin, M.; Lim, B.; Jang, J.-W.; Oh, I.; Hwang, S., Platinum Monolayer Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen Evolution. ACS Nano 2013, 7, 6017-6023.
78. Kamely, N.; Ujihara, M., Confeito-Like Au/Tio2 Nanocomposite: Synthesis and Plasmon-Induced Photocatalysis. Journal of Nanoparticle Research 2018, 20, 172.
79. Berhe, A.; Ujihara, M., Electrochemical and Dip-Coating Synthesis of Dendritic Cu/Cui Nanowire Films and Their Application in Dye Degradation under Uv Irradiation. ChemistrySelect 2018, 3, 10502-10508.
80. Cheng, Z.; Qiu, Y.; Li, Z.; Yang, D.; Ding, S.; Cheng, G.; Hao, Z.; Wang, Q., Fabrication of Silver Dendrite Fractal Structures for Enhanced Second Harmonic Generation and Surface-Enhanced Raman Scattering. Optical Materials Express 2019, 9, 860-869.
81. Liu, J.; Wu, Z.; He, Q.; Tian, Q.; Wu, W.; Xiao, X.; Jiang, C., Catalytic Application and Mechanism Studies of Argentic Chloride Coupled Ag/Au Hollow Heterostructures: Considering the Interface between Ag/Au Bimetals. Nanoscale Research Letters 2019, 14, 35.
82. Fu, T.; Fang, J.; Wang, C.; Zhao, J., Hollow Porous Nanoparticles with Pt Skin on a Ag–Pt Alloy Structure as a Highly Active Electrocatalyst for the Oxygen Reduction Reaction. Journal of Materials Chemistry A 2016, 4, 8803-8811.
83. Han, C.; Ge, L.; Chen, C.; Li, Y.; Zhao, Z.; Xiao, X.; Li, Z.; Zhang, J., Site-Selected Synthesis of Novel Ag@Agcl Nanoframes with Efficient Visible Light Induced Photocatalytic Activity. Journal of Materials Chemistry A 2014, 2, 12594-12600.
84. Chen, Y.; Yuan, P.-X.; Wang, A.-J.; Luo, X.; Xue, Y.; Zhang, L.; Feng, J.-J., A Novel Electrochemical Immunosensor for Highly Sensitive Detection of Prostate-Specific Antigen Using 3d Open-Structured Ptcu Nanoframes for Signal Amplification. Biosensors and Bioelectronics 2019, 126, 187-192.
85. Chen, S.-S.; Lin, X.-X.; Wang, A.-J.; Huang, H.; Feng, J.-J., Facile Synthesis of Multi-Branched Agpt Alloyed Nanoflowers and Their Excellent Applications in Surface Enhanced Raman Scattering. Sensors and Actuators B: Chemical 2017, 248, 214-222.
86. Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y., Surface-Engineered Ptni-O Nanostructure with Record-High Performance for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society 2018, 140, 9046-9050.
87. Ghaly, H. A.; El-Kalliny, A. S.; Gad-Allah, T. A.; Abd El-Sattar, N. E. A.; Souaya, E. R., Stable Plasmonic Ag/Agcl–Polyaniline Photoactive Composite for Degradation of Organic Contaminants under Solar Light. RSC Advances 2017, 7, 12726-12736.
88. Sun, Y., Silver Nanowires – Unique Templates for Functional Nanostructures. Nanoscale 2010, 2, 1626-1642.
89. Sun, Y., Conversion of Ag Nanowires to Agcl Nanowires Decorated with Au Nanoparticles and Their Photocatalytic Activity. The Journal of Physical Chemistry C 2010, 114, 2127-2133.
90. Cherevko, S.; Kulyk, N.; Chung, C.-H., Nanoporous Pt@Auxcu100–X by Hydrogen Evolution Assisted Electrodeposition of Auxcu100–X and Galvanic Replacement of Cu with Pt: Electrocatalytic Properties. Langmuir 2012, 28, 3306-3315.
91. Shim, J. H.; Yang, J.; Kim, S.-j.; Lee, C.; Lee, Y., One Dimensional Ag/Au/Agcl Nanocomposites Stemmed from Ag Nanowires for Electrocatalysis of Oxygen Reduction. Journal of Materials Chemistry 2012, 22, 15285-15290.
92. Yu, Y.; Wijesekara, K. D.; Xi, X.; Willets, K. A., Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. ACS Nano 2019, 13, 3629-3637.
93. Wang, F.; Wong, R. J.; Ho, J. H.; Jiang, Y.; Amal, R., Sensitization of Pt/Tio2 Using Plasmonic Au Nanoparticles for Hydrogen Evolution under Visible-Light Irradiation. ACS Applied Materials & Interfaces 2017, 9, 30575-30582.
94. Hou, D.; Zhou, W.; Liu, X.; Zhou, K.; Xie, J.; li, G.; Chen, S., Pt Nanoparticles/Mos2 Nanosheets/Carbon Fibers as Efficient Catalyst for the Hydrogen Evolution Reaction. Electrochimica Acta 2015, 166.
95. Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y., Electrochemical Tuning of Mos2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano 2014, 8, 4940-4947.
96. Sarkar, A.; Karmakar, K.; Singh, A. K.; Mandal, K.; Khan, G. G., Surface Functionalized H2ti3o7 Nanowires Engineered for Visible-Light Photoswitching, Electrochemical Water Splitting, and Photocatalysis. Physical Chemistry Chemical Physics 2016, 18, 26900-26912.
97. Fan, Y.; Bao, Y.; Song, Z.; Sun, Z.; Wang, D.; Han, D.; Niu, L., Controllable Synthesis of Coloured Ag0/Agcl with Spectral Analysis for Photocatalysis. RSC Advances 2018, 8, 24812-24818.
98. Liu, J.; Wu, W.; Tian, Q.; Yang, S.; Sun, L.; Xiao, X.; Ren, F.; Jiang, C.; Roy, V. A. L., Tube-Like Α-Fe2o3@Ag/Agcl Heterostructure: Controllable Synthesis and Enhanced Plasmonic Photocatalytic Activity. RSC Advances 2015, 5, 61239-61248.
99. Seong, M.; Kim, H.; Lee, S.-W.; Kim, D.; Oh, S. J., Engineering the Work Function of Solution-Processed Electrodes of Silver Nanocrystal Thin Film through Surface Chemistry Modification. APL Materials 2018, 6, 121105.
100. Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.-H., Plasmonic Photocatalysts: Harvesting Visible Light with Noble Metal Nanoparticles. Physical Chemistry Chemical Physics 2012, 14, 9813-9825.
101. Shimura, K.; Yoshida, H., Heterogeneous Photocatalytic Hydrogen Production from Water and Biomass Derivatives. Energy Environ. Sci. 2011, 4, 2467-2481.
102. Gu, D.; Dey, S. K.; Majhi, P., Effective Work Function of Pt, Pd, and Re on Atomic Layer Deposited Hfo2. Applied Physics Letters 2006, 89, 082907.
103. Lee, H.; Lee, H.; Park, J. Y., Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/Tio2. Nano Letters 2019, 19, 891-896.
104. Moon, S. Y.; Song, H. C.; Gwag, E. H.; Nedrygailov, I. I.; Lee, C.; Kim, J. J.; Doh, W. H.; Park, J. Y., Plasmonic Hot Carrier-Driven Oxygen Evolution Reaction on Au Nanoparticles/Tio2 Nanotube Arrays. Nanoscale 2018, 10, 22180-22188.
105. Xu, W.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X.; Inoue, A.; Wang, H., A Highly Efficient Electrocatalyst Based on Amorphous Pd–Cu–S Material for Hydrogen Evolution Reaction. Journal of Materials Chemistry A 2017, 5, 18793-18800.
106. Paul, K. K.; Sreekanth, N.; Biroju, R. K.; Pattison, A. J.; Escalera-López, D.; Guha, A.; Narayanan, T. N.; Rees, N. V.; Theis, W.; Giri, P. K., Strongly Enhanced Visible Light Photoelectrocatalytic Hydrogen Evolution Reaction in an N-Doped Mos2 /Tio2(B) Heterojunction by Selective Decoration of Platinum Nanoparticles at the Mos2 Edge Sites. Journal of Materials Chemistry A 2018, 6, 22681-22696.
107. Jin, H.; Joo, J.; Chaudhari, N. K.; Choi, S.-I.; Lee, K., Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem 2019, 6, 3244-3253.
108. Yoo, J.; Kwak, I. H.; Kwon, I. S.; Park, K.; Kim, D.; Lee, J. H.; Lim, S. A.; Cha, E. H.; Park, J., Nickel Sulfide Nanocrystals for Electrochemical and Photoelectrochemical Hydrogen Generation. Journal of Materials Chemistry C 2020, 8, 3240-3247.
109. Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.; Wang, Y., Targeted Synthesis of Unique Nickel Sulfide (Nis, Nis2) Microarchitectures and the Applications for the Enhanced Water Splitting System. ACS Applied Materials & Interfaces 2017, 9, 2500-2508.
110. Yang, C.; Gao, M. Y.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Abbott, A. P., In-Situ Activation of Self-Supported 3d Hierarchically Porous Ni3s2 Films Grown on Nanoporous Copper as Excellent Ph-Universal Electrocatalysts for Hydrogen Evolution Reaction. Nano Energy 2017, 36, 85-94.
111. Feng, L.-L.; Yu, G.; Wu, Y.; Li, G.-D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X., High-Index Faceted Ni3s2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. Journal of the American Chemical Society 2015, 137, 14023-14026.
112. Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J., Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water. Journal of the American Chemical Society 2013, 135, 17699-17702.
113. Basu, M.; Nazir, R.; Fageria, P.; Pande, S., Construction of Cus/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Scientific Reports 2016, 6, 34738.
114. Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X., Nise Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3d Bifunctional Electrode for Full Water Splitting. Angewandte Chemie International Edition 2015, 54, 9351-9355.
115. Ding, Q.; Song, B.; Xu, P.; Jin, S., Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using Mos2 and Related Compounds. Chem 2016, 1, 699-726.
116. Wang, D.; Pan, Z.; Wu, Z.; Wang, Z.; Liu, Z., Hydrothermal Synthesis of Mos2 Nanoflowers as Highly Efficient Hydrogen Evolution Reaction Catalysts. Journal of Power Sources 2014, 264, 229-234.
117. Li, J.; Xu, P.; Zhou, R.; Li, R.; Qiu, L.; Jiang, S. P.; Yuan, D., Co9s8–Ni3s2 Heterointerfaced Nanotubes on Ni Foam as Highly Efficient and Flexible Bifunctional Electrodes for Water Splitting. Electrochimica Acta 2019, 299, 152-162.
118. Li, J.; Shen, P. K.; Tian, Z., One-Step Synthesis of Ni3s2 Nanowires at Low Temperature as Efficient Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy 2017, 42, 7136-7142.
119. Xia, C.; Liang, H.; Zhu, J.; Schwingenschlögl, U.; Alshareef, H. N., Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials 2017, 7, 1602089.
120. Hong, E.; Kim, D.; Kim, J. H., Heterostructured Metal Sulfide (Zns–Cus–Cds) Photocatalyst for High Electron Utilization in Hydrogen Production from Solar Water Splitting. Journal of Industrial and Engineering Chemistry 2014, 20, 3869-3874.
121. Yin, X.-L.; Li, L.-L.; Jiang, W.-J.; Zhang, Y.; Zhang, X.; Wan, L.-J.; Hu, J.-S., Mos2/Cds Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation. ACS Applied Materials & Interfaces 2016, 8, 15258-15266.
122. Wang, F.; Wu, H.; Sun, H.; Ma, L.; Shen, W.; Li, Y.; Zheng, M., Hierarchical Mos2/Ni3s2 Core-Shell Nanofibers for Highly Efficient and Stable Overall-Water-Splitting in Alkaline Media. Materials Today Energy 2018, 10, 214-221.
123. Jiang, L.; Yang, N.; Yang, C.; Zhu, X.; Jiang, Y.; Shen, X.; Li, C.; Sun, Q., Surface Wettability Engineering: Cosx-Ni3s2 Nanoarray Electrode for Improving Overall Water Splitting. Applied Catalysis B: Environmental 2020, 269, 118780.
124. Hong, Y.; Zhang, J.; Huang, F.; Zhang, J.; Wang, X.; Wu, Z.; Lin, Z.; Yu, J., Enhanced Visible Light Photocatalytic Hydrogen Production Activity of Cus/Zns Nanoflower Spheres. Journal of Materials Chemistry A 2015, 3, 13913-13919.
125. Ji, J.; Sun, B.; Shan, F.; Li, Q.; Huang, F.; Song, Y.; Wang, F., Optimization of Cds@Mos2 Core–Shell Nanorod Arrays for an Enhanced Photo-Response for Photo-Assisted Electrochemical Water Splitting under Solar Light Illumination. RSC Advances 2016, 6, 100115-100121.
126. Liu, H.; Ma, X.; Rao, Y.; Liu, Y.; Liu, J.; Wang, L.; Wu, M., Heteromorphic Nico2s4/Ni3s2/Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Interfaces 2018, 10, 10890-10897.
127. Choi, Y.; Beak, M.; Yong, K., Solar-Driven Hydrogen Evolution Using a Cuins2/Cds/Zno Heterostructure Nanowire Array as an Efficient Photoanode. Nanoscale 2014, 6, 8914-8918.
128. Yang, S.; Guan, H.; Zhong, Y.; Quan, J.; Luo, N.; Gao, Q.; Xu, Y.; Peng, F.; Zhang, S.; Fang, Y., Cds@Ni3s2 for Efficient and Stable Photo-Assisted Electrochemical (P-Ec) Overall Water Splitting. Chemical Engineering Journal 2021, 405, 126231.
129. Guan, H.; Zhang, S.; Cai, X.; Gao, Q.; Yu, X.; Zhou, X.; Peng, F.; Fang, Y.; Yang, S., Cds@Ni3s2 Core–Shell Nanorod Arrays on Nickel Foam: A Multifunctional Catalyst for Efficient Electrochemical Catalytic, Photoelectrochemical and Photocatalytic H2 Production Reaction. Journal of Materials Chemistry A 2019, 7, 2560-2574.
130. Pejjai, B.; Reddivari, M.; Kotte, T. R. R., Phase Controllable Synthesis of Cus Nanoparticles by Chemical Co-Precipitation Method: Effect of Copper Precursors on the Properties of Cus. Materials Chemistry and Physics 2020, 239, 122030.
131. Si, F.; Tang, C.; Gao, Q.; Peng, F.; Zhang, S.; Fang, Y.; Yang, S., Bifunctional Cds@Co9s8/Ni3s2 Catalyst for Efficient Electrocatalytic and Photo-Assisted Electrocatalytic Overall Water Splitting. Journal of Materials Chemistry A 2020, 8, 3083-3096.
132. Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K., Anodic Cu2s and Cus Nanorod and Nanowall Arrays: Preparation, Properties and Application in Co2 Photoreduction. Nanoscale 2014, 6, 14305-14318.
133. Kim, H.-J.; Suh, S.-M.; Rao, S. S.; Punnoose, D.; Tulasivarma, C. V.; Gopi, C. V. V. M.; Kundakarla, N.; Ravi, S.; Durga, I. K., Investigation on Novel Cus/Nis Composite Counter Electrode for Hindering Charge Recombination in Quantum Dot Sensitized Solar Cells. Journal of Electroanalytical Chemistry 2016, 777, 123-132.
134. Zhang, N.; Lei, J.; Xie, J.; Huang, H.; Yu, Y., Mos2/Ni3s2 Nanorod Arrays Well-Aligned on Ni Foam: A 3d Hierarchical Efficient Bifunctional Catalytic Electrode for Overall Water Splitting. RSC Advances 2017, 7, 46286-46296.
135. Lu, W.; Song, Y.; Dou, M.; Ji, J.; Wang, F., Self-Supported Ni3s2@Mos2 Core/Shell Nanorod Arrays Via Decoration with Cos as a Highly Active and Efficient Electrocatalyst for Hydrogen Evolution and Oxygen Evolution Reactions. International Journal of Hydrogen Energy 2018, 43, 8794-8804.
136. Makuła, P.; Pacia, M.; Macyk, W., How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on Uv–Vis Spectra. The Journal of Physical Chemistry Letters 2018, 9, 6814-6817.
137. Sun, G.; Shi, J.-W.; Zou, Y.; Mao, S.; Ma, D.; Lv, Y.; Sun, L.; Li, Z.; Cheng, Y., One-Step Synthesis of Cds/Cdse/Cus Hollow Nanospheres in Aqueous Solution for Enhanced Photocatalytic Hydrogen Evolution. Sustainable Energy & Fuels 2020, 4, 3467-3476.
138. Yang, L.; Guo, Z.; Huang, J.; Xi, Y.; Gao, R.; Su, G.; Wang, W.; Cao, L.; Dong, B., Vertical Growth of 2d Amorphous Fepo4 Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water Splitting. Advanced Materials 2017, 29, 1704574.
139. Li, S.; Hao, X.; Abudula, A.; Guan, G., Nanostructured Co-Based Bifunctional Electrocatalysts for Energy Conversion and Storage: Current Status and Perspectives. Journal of Materials Chemistry A 2019, 7, 18674-18707.
140. Ma, D.; Hu, B.; Wu, W.; Liu, X.; Zai, J.; Shu, C.; Tadesse Tsega, T.; Chen, L.; Qian, X.; Liu, T. L., Highly Active Nanostructured Cos(2)/Cos Heterojunction Electrocatalysts for Aqueous Polysulfide/Iodide Redox Flow Batteries. Nat Commun 2019, 10, 3367.
141. Ma, D.; Hu, B.; Wu, W.; Liu, X.; Zai, J.; Shu, C.; Tadesse Tsega, T.; Chen, L.; Qian, X.; Liu, T. L., Highly Active Nanostructured Cos2/Cos Heterojunction Electrocatalysts for Aqueous Polysulfide/Iodide Redox Flow Batteries. Nature Communications 2019, 10, 3367.
142. Chandra, M.; Bhunia, K.; Pradhan, D., Controlled Synthesis of Cus/Tio2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting. Inorganic Chemistry 2018, 57, 4524-4533.
143. Tirado, J.; Roldán-Carmona, C.; Muñoz-Guerrero, F. A.; Bonilla-Arboleda, G.; Ralaiarisoa, M.; Grancini, G.; Queloz, V. I. E.; Koch, N.; Nazeeruddin, M. K.; Jaramillo, F., Copper Sulfide Nanoparticles as Hole-Transporting-Material in a Fully-Inorganic Blocking Layers N-I-P Perovskite Solar Cells: Application and Working Insights. Applied Surface Science 2019, 478, 607-614.
144. Wang, R.; Chen, S.; Ng, Y. H.; Gao, Q.; Yang, S.; Zhang, S.; Peng, F.; Fang, Y.; Zhang, S., Zno/Cds/Pbs Nanotube Arrays with Multi-Heterojunctions for Efficient Visible-Light-Driven Photoelectrochemical Hydrogen Evolution. Chemical Engineering Journal 2019, 362, 658-666.
145. Lee, J.-E.; Marques Mota, F.; Choi, C. H.; Lu, Y.-R.; Boppella, R.; Dong, C.-L.; Liu, R.-S.; Kim, D. H., Plasmon-Enhanced Electrocatalytic Properties of Rationally Designed Hybrid Nanostructures at a Catalytic Interface. Advanced Materials Interfaces 2019, 6, 1801144.
146. Wei, Y.; Zhang, X.; Liu, Z.; Chen, H.-S.; Yang, P., Site-Selective Modification of Agpt on Multibranched Au Nanostars for Plasmon-Enhanced Hydrogen Evolution and Methanol Oxidation Reaction in Visible to near-Infrared Region. Journal of Power Sources 2019, 425, 17-26.
147. Wang, M.; Chang, Y.-S.; Tsao, C.-W.; Fang, M.-J.; Hsu, Y.-J.; Choy, K.-L., Enhanced Photoelectrochemical Hydrogen Generation in Neutral Electrolyte Using Non-Vacuum Processed Cigs Photocathodes with an Earth-Abundant Cobalt Sulfide Catalyst. Chemical Communications 2019, 55, 2465-2468.
148. Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on Mos2 Nanosheets. Journal of the American Chemical Society 2015, 137, 7365-7370.
149. Nigusie, A. L.; Ujihara, M., Plasmon-Enhanced Hydrogen Evolution Reaction on a Ag-Branched-Nanowire/Pt Nanoparticle/Agcl Nanocomposite. Physical Chemistry Chemical Physics 2021, 23, 16366-16375.

無法下載圖示 全文公開日期 2026/10/27 (校內網路)
全文公開日期 2026/10/27 (校外網路)
全文公開日期 2026/10/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE