簡易檢索 / 詳目顯示

研究生: 黃偉菱
Wei-Lin Hwang
論文名稱: 梯田環繞型音樂廳邊界牆及天花板之聲學設計探討
Acoustics Design of Terraced Surround Concert Halls Considering Perimeter Walls and Ceiling
指導教授: 江維華
Wei-Hwa Chiang
口試委員: 江維華
Wei-Hwa Chiang
蔡欣君
Shin-Jiun Tsai
林葳
Wei Lin
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 222
中文關鍵詞: 梯田式音樂廳初步設計側牆形式天花板形式席區聲學優化
外文關鍵詞: Terraced concert hall, preliminary design, side wall form, ceiling form, acoustic optimization of seating area
相關次數: 點閱:253下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以一個先前曾經深入探討過席位分割之梯田音樂廳方案為基礎,探討納入邊界形
狀調整之統整聲學校應。
起初針對15 座梯田式音樂廳,進行幾何形式特分析,並對其進行席位、邊界牆面、天花
板等形式上分析,歸納出設計梯田式音樂廳的影響因子。而後探討台科大團隊於2010
~2014 年曾系統化分析,及建置的葉形邊界梯田環繞型音樂廳方案,作為初帶模型1-1 基
礎。後續在修正舞台後方席位視角方向,讓後方高起的上層席位能夠反射聲音回座席,
而產生方案1-4。過程中部分席位微調方案,也有應用(賴信佑2021)席位生成參數化工
具,輔助建構具合理視線之席位區塊。設計者可透過反射面定位之輔助功能,微調視角
方向反射面尺寸和方向。期間也嘗試將邊界幾何型態進行參數化嘗試,以檢討參數化輔
助工具之應用。而繼參數席位後之方案,均以方案1-4 的席位分割配置作為基礎,而側
牆、高側牆傾斜角度、天花板央起式及反曲式作為實驗模組之變因,進行側牆及天花方
案建置。
最後透過Odeon 分析軟體進行方案模擬,並分析其響度(G80)、側向能量(LF80)、早期衰
減(EDT)、C80 等數據,試著歸類出側牆及天花在邊界設計上,應考量之優化設計因子。


This study explores the integration of boundary shape acoustic effect. Based on previous study of the seat division in terraced concert hall.
At the beginning of the study, 15 terraced concert halls were analyzed in geometric form, and their seats, boundary walls, ceilings and other forms were analyzed, and the influence factors ofthe design terraced concert halls were summarized. Then discuss the systematic analysis the
construction of the leaf-shaped boundary terraced surrounding concert hall model from Taiwan University of Science and Technology team from 2010 to 2014, and usde it as the initial base model 1-1. Subsequently correct the seat slope and viewing angle from the zone which is at the back of the stage, so that the upper seat can reflect the sound back to the audience, and produce a scheme 1-4. In the process of some of scheme, there are also applications (Lai Xinyou 2021) seat
generation parameterization tools, to assist in the construction of seat blocks with reasonable line of sight. The designer can fine-tune the size and direction of the reflective surface through the auxiliary function of the reflective surface positioning. During this period, an attempt is also made to parametricize the boundary geometry to explore the application of parametric adjuvant tool. After the previous parametric case, all the case take the seat configuration of scheme 1-4 as
the basis, while the side wall, the high side wall tilt angle, the ceiling forms become the experimental modules,proceeding with new cases.
Finally, the Odeon analysis software is used to simulate the schemes, analyzing its loudness(G80), lateral energy (LF80), early attenuation (EDT), music clarity indicator (C80) and other data, try to classify the side wall and ceiling in the boundary design, which should be considered as the optimization design factor.

摘要 1 ABSTRACT 2 誌謝 3 目錄 5 圖目錄 8 表目錄 13 第一章 緒論 14 1.1 研究背景與動機 14 1.2 研究目的 14 1.3 架構圖 16 第二章 梯田環繞型音樂廳背景與理論 17 2.1 梯田環繞型音樂廳定義 17 2.2 梯田環繞型音樂廳發展脈絡 17 2.3 梯田式設計手法的出現 19 2.4 梯田式音樂廳幾何分析 20 2.5 音樂廳音質評估參數 28 2.6 建築聲學問題處理手法 31 第三章 研究方法 36 3.1 實驗模組變因設定 36 3.2 衍生式輔助設計系統的運用 37 3.3 衍生式系統操作流程建構 37 3.4 Odeon模擬工具設定 46 第四章 初代方案建構 48 4.1 初代模型發展過程 48 4.2 方案0-1跟0-2建構 54 4.3 方案0.1、0-2統整分析 57 4.4 原始葉形梯田區塊方案建構(方案1-1) 59 4.5 原始葉形梯案分隔牆優化方案(方案1-2 ) 64 4.6 方案1-3跟1-4模型建構 70 4.7 方案1-1~1-4統整分析 76 4.8 席位區塊高度與位置調整試驗方案(方案2-1與2-2) 78 4.9 方案2-1~2-2統整分析 82 第五章 側牆天花板建構與模擬 84 5.1 側牆設計 84 5.2 高側牆設計之重要性 84 5.3 側牆垂直與整面下傾方案建構(方案3-1跟3-2) 85 5.4 大面積上段邊界牆面下傾方案(方案3-3跟3-4) 89 5.5 方案3-1~3-4統整分析 93 5.6 小面積上段邊界牆面下傾方案(方案3-5跟3-6) 95 5.7 下段邊界牆面下傾方案(方案3-7跟3-8) 100 5.8 方案3-5 到3-8統整分析 104 5.9 雙段邊界牆面下傾方案(方案3-9跟3-10) 106 5.10 矩形梯田區塊方案建構(方案3-11與3-12) 110 5.11 簡單綜向變化天花方案(方案4-1跟4-2) 115 5.12 複合綜向變化天花方案(方案4-3跟4-4) 120 5.13 方案4-1到4-4統整分析 126 5.14 綜向反曲天花方案(方案4-5跟4-6) 128 5.15 綜向梯度帳篷天花方案(方案4-7跟4-8) 134 5.16 方案4-5~4-8統整分析 137 5.17 梯度帳篷天花優化方案(方案5-1跟5-2) 139 5.18 梯度帳篷天花碎化及散射方案(方案5-3跟5-4) 143 5.19 方案5-1~5-4統整分析 146 5.20 簡單橫向坡面天花方案(方案5-5與5-6) 148 5.21 複合橫向坡面天花方案(方案5-7與5-8) 151 5.22 方案5-5 ~ 5-8統整分析 154 第六章 討論 156 6.1 所有方案數據比對 156 6.2 探討全方案之有無指向性G80、無指向性LF80 159 6.3 席位方案比較與影響 162 6.4 側牆方案比較與影響 163 6.5 天花板方案比較與影響 165 6.6 各個參數之間的交互影響 167 6.7 方案設計建議 171 總結 173 後續研究建議 174 附錄B、傳統聲學驗證手法 189 附錄C、Odeon點位分析設定 190 附錄C、各方案點位數據 193 附錄D、各個參數的平均值、標準差 212 第七章 參考文獻 214

黃崑煌. (2009). 扇形音樂廳對觀眾席音能量分佈的影響. (碩士), 國立臺灣科技大學, 台北市.
江哲儒. (2010). 具3D自由曲面廳堂聲學縮尺模型製作之個案探討. (碩士), 國立臺灣科技大學, 台北市.
陳嘉君. (2010). 具備傳統鞋盒式音樂廳特質之階梯式廳堂. (碩士), 國立臺灣科技大學, 台北市.
葉奕德. (2010). 中型梯田式音樂廳設計之個案討論. (碩士), 國立臺灣科技大學, 台北市.
孫藝珊. (2014). 大型梯田式廳堂聲學性能之縮尺模型驗證. (碩士), 國立臺灣科技大學, 台北市.
Anh-Nguyen, P. (2016). 大型梯田式音樂廳之舞台聲場設計與縮尺模型驗證. (碩士), 國立臺灣科技大學, 台北市.
陳嘉儷. (2016). 梯田式音樂廳獨唱演出之聲學評價. (碩士), 國立臺灣科技大學, 台北市.
賴信佑. (2021). 以衍生設計手法探討環繞型梯田音樂廳於初步設計上的應用. (碩士), 國立臺灣科技大學, 台北市.
Alambeigi, P., et al. (2017). "Shape the Design with Sound Performance Prediction: A Case Study for Exploring the Impact of Early Sound Performance Prediction on Architectural Design."

Ando, Y. (2015). Opera house acoustics based on subjective preference theory, Springer.

Ando, Y. and P. Cariani (2009). Auditory and visual sensations, Springer.

Barron, M. (2009). Auditorium acoustics and architectural design, Routledge.

Barron, M. (2019). Basic design techniques to achieve lateral reflections in concert halls, Universitätsbibliothek der RWTH Aachen.

Bassuet, A., et al. (2014). "Computational and optimization design in geometric acoustics." 21(1): 75-85.

Beranek, L. (2004). One hundred concert halls and opera houses. Concert Halls and Opera Houses, Springer: 37-489.

Beranek, L. (2012). Concert halls and opera houses: music, acoustics, and architecture, Springer Science & Business Media.

Chiang, W.-h., et al. (2010). Stage acoustics for vineyard concert hall. Proc. ISRA.

Chiang, W., et al. (2012). "Acoustics of vineyard concert hall concerning the audience and the performers." 131(4): 3242-3242.

Dunn, F., et al. (2015). Springer handbook of acoustics, Springer.

Jurkiewicz, Y. and E. J. J. o. t. A. S. o. A. Kahle (2008). "Early reflection surfaces in Concert Halls-a new quantitative criterion." 123(5): 3908.

Müller, H. A. (1982). Principles and applications of room acoustics, Applied Science.

Neufert, E. and P. Neufert (2012). Architects' data, John Wiley & Sons.

O'Keefe, J., et al. (2014). "A new software tool to facilitate NURB based geometries in acoustic design." 21(1): 97-104.

Peters, B., et al. (2013). HubPod: integrating acoustic simulation in architectural design workflows. Proceedings of the symposium on simulation for architecture & urban design.

Savioja, L. and U. P. J. T. J. o. t. A. S. o. A. Svensson (2015). "Overview of geometrical room acoustic modeling techniques." 138(2): 708-730.

Scelo, T. J. A. A. (2015). "Integration of acoustics in parametric architectural design." 43(1): 59-67.

Shtrepi, L., et al. (2019). Optimizing diffusive surface topology through a performance-based design approach, Universitätsbibliothek der RWTH Aachen.

Siebein, G. and A. GOLD (1997). Designing the Concert Hall of the 2 1 st Century: Historic Precedent and Vir tual Reality. Proceedings of the 85th ACSA Annual Meeting and Technology Conference, Dallas, TX.

Watson, D. (2004). "Time-saver standards for Architectural Design."

Wulfrank, T., et al. (2017). "CREATIVE POSSIBILITIES AND LIMITATIONS OF CURVED SURFACES IN THE ACOUSTIC DESIGN OF CONTEMPO-RARY AUDITORIA."

QR CODE