簡易檢索 / 詳目顯示

研究生: 盧其宏
Chi-Hung Lu
論文名稱: 不同伺服閥在單軸氣壓機械手臂之應用與比較
Various Servo Valves Applied for Single-Axial Pneumatic Arms and Their Comparisons
指導教授: 莊福盛
Fu-Sheng Chuang
口試委員: 林鴻裕
none
王英才
Ying-Tsai Wang
蔡明俊
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 流量型伺服閥壓力型伺服閥光學編碼器撓性氣壓缸類神經自組織滑動模糊控制
外文關鍵詞: P-Valve, Q-Valve, Optical Encoder, Pneumatic Muscle Actuator, Neural Network Self-Organizing Sliding Mode Fuzz
相關次數: 點閱:404下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用壓力型伺服閥和流量型伺服閥進行單軸撓性氣壓機械手臂的角位移控制。利用類神經自組織滑動模糊控制理論設計控制器,藉由Microsoft Visual Studio 2008設計控制軟體。自組織模糊學習機構即時修正模糊規則表,類神經網路學習機構即時修正系統的G_u和K_I。過程中將透過不同負載、頻率及波形輸入在單軸撓性氣壓機械手臂的實驗。實驗結果顯示在無負載與有負載之步階實驗,暫態與穩態性能上壓力型伺服閥比流量型伺服閥較好,在無負載與有負載之0.05~0.2Hz正弦疲勞實驗,顯示流量型伺服閥的控制性比壓力型較佳。


This paper use various servo valves on the Single-Axial Pneumatic Arms to control the angular displacement. Use the Neural Network Self-Organizing Sliding Mode Fuzzy Control to be a controller, then use
Microsoft Visual Studio 2008 to be a design software. Self-Organizing immediate correction the fuzzy rule table and Neural Netwrok immediate correction the system’s G_u and K_I. During experiments will through different load, frequency and waveform input on the Single-Axial Pneumatic Arms. Experimental results show that P-Valve is good than Q-vale at no load step experiment and load step experiment, and Q-valve is good than P-Valve at no load 0.05~0.2Hz sinusoidal experiment and load 0.05~0.2Hz sinusoidal experiment.

中文摘要 Abstract 致謝 目錄 圖表索引 符號說明 第一章緒論 1.1.研究動機與目的 1.2.文獻回顧 1.3.論文大綱 第二章實驗系統架構 2.1.系統架構 2.2.實驗設備 2.3.系統工作流程 第三章控制理論 3.1.類神經自組織滑動模糊之控制架構 3.2. 滑動模式控制 3.3. 模糊控制裡論 3.3.1. 模糊化 3.3.2. 模糊知識庫 3.3.3. 模糊推論 3.3.4. 解模糊化 3.4. 自組織學習機構 3.5. 類神經網路 3.5.1. 類神經網路理論 3.5.2. 類神經網路架構 3.5.3. 倒傳遞類神經網路架構 3.5.4. 類神經網路G_u、K_I公式推導 第四章實驗結果與分析 4.1.實驗規劃 4.2.實驗參數設定 4.3.實驗結果與分析 4.3.1.無負載步階實驗 4.3.2.有負載步階實驗 4.3.3. 無負載0.05~0.2Hz正弦疲勞實驗 4.3.4. 有負載0.05~0.2Hz正弦疲勞實驗 第五章結論 參考文獻

[1]Costa ,N. and Caldwell, D.G. , "Control of a Biomimetic "Soft-Actuated" 10-DoF Lower Body Exoskeleton," Biomedical Robotics and Biomechatronics, BioRob 2006. The First IEEE/RAS-EMBS International Conference on , pp. 495-501, 2006
[2]Ikemoto, S. , Nishigori , Y. and Hosoda , K. , "Direct Teaching Method for Musculoskeletal Robots Driven by Pneumatic Artificial Muscles," Robotics and Automation (ICRA), IEEE 2012 International Conference on , pp.3185-3191, 14-18 May 2012
[3]Xing, K. , Xu ,Q. , He,J. , Wang, Y. , Liu,Z. and Huang ,X. , "A Wearable Device for Repetitive Hand Therapy, " Biomedical Robotics and Biomechatronics. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on , pp.919-923, 2008
[4]Ahn , K.K. and Anh, H.P.H. , "Design & Implementation an Adaptive Takagi-Sugeno Fuzzy Neural Networks Controller for the 2-Links Pneumatic Artificial Muscle (PAM) Manipulator Using in Elbow Rehabilitation," Communications and Electronics. ICCE '06. First International Conference on , pp.356-361, 2006
[5]Situm, Z. and Herceg, S. , "Design and Control of a Manipulator Arm Driven by Pneumatic Muscle Actuators," Control and Automation, 2008 16th Mediterranean Conference on , pp.926-931, June 2008
[6]Cho, T.Y., Lee, J.Y. and Lee, J.J., "Control of Artificial Pneumatic Muscle for Robot Application," Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on , pp.4896-4901, 2006
[7]Chang ,M.K., Yen, P.L. and Yuan ,T.H. , "Angle Control of a One-Dimension Pneumatic Muscle Arm Using Self-Organizing Fuzzy Control," Systems, Man and Cybernetics, 2006. SMC '06. IEEE International Conference on , Vol.5, pp.3834-3838, 2006
[8]Choi ,T.Y. , Jin ,S. and Lee ,J.J. , "Implementation of a Robot Actuated by Artificial Pneumatic Muscles," SICE-ICASE, 2006. International Joint Conference , pp.4733-4737, 2006
[9]Jutras , D. and Bigras, P., "Control of an Actuator Made of Two Antagonist McKibben Muscles via LMI Optimization," Industrial Electronics, 2006 IEEE International Symposium on , Vol.4, pp.3072-3077, 2006
[10] Tri ,V.M. , Tegoeh , T. , Ramon , H. and Brussel , H.V., "A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model," Mechatronics, IEEE/ASME Transactions on , Vol.16, No.1, pp.177-186, 2011
[11] Balasubramanian , K. and Rattan , K.S. , "Trajectory Tracking Control of a Pneumatic Muscle System Using Fuzzy Logic," Fuzzy Information Processing Society. NAFIPS 2005. Annual Meeting of the North American , pp. 472- 477, 2005
[12] Lilly, J.H. and Yang,L. , “Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration,” IEEE Trans. on Cont. Sys. Tech., Vol.13, No.4, pp.550-558, 2005.
[13] Chang, M.K. , Yen, P.L. and Yuan, T.H., “Angle Control of a one-Dimension Pneumatic Muscle Arm using Self-Organizing Fuzzy Control,” IEEE, International Conference on Systems, Man, and Cybernetics, pp.3834-3838, 2006.
[14] Zadeh , L.A. , “Fuzzy Sets,” Information and Control, Vol.8, pp. 338-353, 1965.
[15] Mamdani , E.H., “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant”, Proceedings of the Institution of Electrical Engineers, Vol.121, No.12, pp. 1585-1588, 1974.
[16] Procyk , T.J. and Mamdani , E.H., “A Linguistic Self-Organizing Process Controller,” Automatica, Vol. 15, pp. 15-30, 1979.
[17] Kim, S.W. and Lee , J.J., “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets & Systems, Vol.71, No.3, pp. 359-67, 1995.
[18] Lo , J.C. and Kuo , Y.H., “Decoupling Fuzzy Sliding-Mode Control,” IEEE Transactions on Fuzzy System, Vol.6, No.3, 1998.

無法下載圖示 全文公開日期 2018/06/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE