簡易檢索 / 詳目顯示

研究生: 吳昶霖
Chang-Lin Wu
論文名稱: 在氧環境下微波加熱快速交聯之PVP閘極絕緣層應用於有機薄膜電晶體 特性改善之研究
Investigation on the Ameliorative Characteristic of Organic Thin-Film Transistors for Using PVP as Gate Insulator Cross-Linked Rapidly Microwave Heating in Oxygen Ambient
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee 
顏文正
none
蔡永誠
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 有機薄膜電晶體微波加熱交聯
外文關鍵詞: PVP, pentacene, microwave-induction heating, cross-link
相關次數: 點閱:273下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個部分,第一部分為使用旋轉塗佈PVP (Poly(4-vinylphenol))作為閘極絕緣層,為了找出PVP閘極絕緣層的最佳參數,我們改變PVP配製溶液的比例濃度、旋轉塗佈轉速以及加熱交聯溫度,最後發現,比例濃度為PGMEA:PVP:PMCF = 100:10:5.0 (wt%),旋轉塗佈初轉速1000 rpm,時間20秒,末轉速4500 rpm,持續時間為40秒,放入烤箱以攝氏180度加熱交聯90分鐘所製作出的有機薄膜電晶體的電特性為最佳。
    第二部分為在氧環境下微波加熱交聯PVP閘極絕緣層之有機薄膜電晶體,我們發現在20分鐘處理時間下,PVP無法充分地交聯,使閘極絕緣層中氫氧根含量較多,導致Ioff電流上升。而在80分鐘處理時間下,因加熱時間過長,使得PVP表面變的粗糙,使pentacene成長於閘極絕緣層表面無法有序排列,導致Ion下降。在處理時間為60分鐘有最佳的電特性,臨界電壓為-7.53 V、場效遷移率為1.281 cm^2/V-s、次臨界擺幅為0.842 V/dec.以及開關電流比為7.07E4。


    This thesis is divided into two parts. The first part presents the spin-coated PVP (Poly(4-vinylphenol)) as gate insulator. In order to determine the superior parameter of PVP as the gate insulator, we modulate the various PVP to PMCF weight ratio, where PMCF is a cross-linking agent, different rotation speed of spin-coating and annealed temperature due to efficiently induce the cross-linking process between PVP and PMCF. Ultimately, the optimized parameter ,we got, for the ratio of concentration is PGMEA:PVP:PMCF = 100:10:5.0 (wt%), for the initial rotation speed of spin-coating is 1000 rpm for 20 s while the final one is 4500 rpm for 40s, and cross-linked in the vacuum oven at 180。C for 90 min.
    In the second part, the scheme of microwave-induction heating (MIH) in oxygen ambient is utilized for the PVP layers cross-linked. However, after the treatment for 20 minutes, we observed that the reason of the increasing off current is there are excess hydroxyl groups in PVP dielectric layer caused by incompletely cross-linked PVP; while under the 80 minutes treatment, PVP surface morphology is turned to rough due to overheating. It make the pentacene grow on the surface disorderly which leads to descending of on current. We have shown that improve device characteristics demonstrate optimal treatment time, threshold voltage, field effect mobility, subthreshold swing and the on/off current ratio are 60 minutes, -7.53 V, 1.281 cm2/V-s, 0.824 V/decade and 7.07E4, respectively.

    目錄 論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 概論 1 1.1 研究背景 1 1.1.1 有機薄膜電晶體 1 1.1.2 微波與傳統退火 3 1.2 研究動機 3 1.3 論文大綱 4 第二章 有機薄膜電晶體介紹 5 2.1 有機半導體介紹 5 2.1.1 有機半導體概論 5 2.1.2 有機半導體Pentacene之特性介紹 9 2.2 有機半導體之傳輸機制 9 2.2.1載子跳躍模型機制 (Hopping Model) 11 2.2.2陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 12 2.2.3偏極子模型機制 (The Polaron Model) 13 2.3 有機絕緣層介紹 14 2.4有機薄膜電晶體結構 15 2.5 有機薄膜電晶體之操作模式 17 2.6 電性參數萃取方式 22 2.6.1 載子移動率(Mobility, μ) 22 2.6.2 臨界電壓(Threshold Voltage, Vth) 24 2.6.3 次臨界斜率(Subthreshold Swing, S.S.) 25 2.6.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 26 第三章 實驗方法與概論 27 3.1 有機薄膜電晶體之製作流程 27 3.1.1 基板(Substrate) 27 3.1.2 閘極(Gate) 27 3.2閘極絕緣層(GATE INSULATOR LAYER) 28 3.2.1 聚乙烯苯酚(PVP)之製備與塗佈 28 3.2.2聚乙烯苯酚(PVP)之交聯 29 3.3主動層(ACTIVE LAYER) 30 3.4源極/汲極(SOURCE/DRAIN) 32 3.5製程機台及分析設備介紹 (SEMICONDUCTOR PARAMETER ANALYZER) 33 3.5.1 製程機台 33 3.5.2半導體參數分析儀(SEMICONDUCTOR PARAMETER ANALYZER) 37 3.5.3傅立葉轉換紅外線光譜儀(FOURIER TRANSFORM INFRARED SPECTROMETER,FTIR) 37 3.5.4原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 38 3.5.5 接觸角(CONTACT ANGLE)量測 39 第四章 PVP閘極絕緣層參數決定與實驗結果 41 4.1 不同比例濃度PMCF交聯劑下之PVP閘極絕緣層的影響 41 4.1.1簡介 41 4.1.2實驗參數 41 4.1.3實驗結果與分析 42 4.2 不同旋轉塗佈轉速下PVP閘極絕緣層的影響 47 4.2.1簡介 47 4.2.2實驗參數 47 4.2.3實驗結果與分析 47 4.3不同烤箱溫度加熱交聯下PVP閘極絕緣層的影響 52 4.3.1簡介 52 4.3.2實驗參數 52 4.3.3實驗結果與分析 52 第五章 微波加熱原理討論與實驗結果 57 5.1微波金屬加熱原理 57 5.2在有無通氧環境下微波交聯PVP 65 5.2.1簡介 65 5.2.2實驗參數 65 5.2.3實驗結果與分析 66 5.3不同加熱時間下對通氧微波交聯PVP閘極絕緣層的影響 70 5.3.1 簡介 70 5.3.2實驗參數 70 5.3.3實驗結果與分析 71 5.4兩階段加熱交聯:在氧環境下,微波加熱後再電阻式加熱交聯PVP閘極絕緣層的影響 80 5.4.1 簡介 80 5.4.2實驗參數 80 5.4.3實驗結果與分析 81 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 6.2.1不同氣體環境下(氮氣及氧氣)微波交聯PVP閘極絕緣層的影響 87 參考文獻 89

    [1] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors,” Thin Solid Films, Vol. 438, p.279 (2003).

    [2] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).

    [3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,“Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).

    [4] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee , Y. Yi, M. H. Cho, “Improvement of The Contact Resistance Between ITO and Pentacene Using Various Metal-Oxide Interlayers,” Organic Electronics, Vol. 9, pp. 1140–1145 (2008).

    [5] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, pp.767–770 (2012).

    [6] C. B. Park, J. D. Lee, “Effect of Stacked Dielectric with High Dielectric Constant and Surface Modification On Current Enhancement in Pentacene Thin-film Transistors,” Current Applied Physics, Vol. 13, pp.170-175 (2013).

    [7] N. J. Watkins, L. Yan, and Y. Gao, “Electronic Structure Symmetry of Interfaces Between Pentacene and Metals,” Applied Physics Letters, Vol. 80, p.4384 (2002).

    [8] N. J. Watkins, L. Yan, and Y. Gao, “Electronic Structure Symmetry of Interfaces Between Pentacene and Metals,” Applied Physics Letters, Vol. 80, p.4384 (2002).

    [9] H. Peisert, M. Knupfer, and J. Fink, “Energy Level Alignment at Organic/Metal Interfaces: Dipole and Ionization Potential,” Applied Physics Letters, Vol. 81, p.2400 (2002).

    [10] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual Role of Lif as a Hole-Injection Buffer in Organic Light-Emitting Diodes,” Applied Physics Letters, Vol. 84, p.2913 (2004).

    [11] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou,“Buffer-Layer-Induced Barrier Reduction: Role of Tunneling in Organic Light-Emitting Devices,” Applied Physics Letters, Vol. 84, p.425 (2004).

    [12] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode,” Journal of Applied Physics, Vol. 95, p.3828 (2004).

    [13] J. Li, X.W Zhang, L. Zhang, Khizar, X.Y Jiang, W.Q Zhu, and Z.L Zhang, “Improving Organic Transistor Performance Through Contact-Area-Limited Doping,” Solid State Communications, Vol. 149, pp.1826-1830 (2009).

    [14] C. L Fan, and P. C Chiu, “Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting an Ultrathin Teflon Carrier Injection Layer,” Japanese Journal of Applied Physics, Vol. 50, p.100203 (2011).

    [15] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).

    [16] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐Effect Mobility of Poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, pp. 195 (1988).

    [17] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen: in “Lower Dimensional Systems and Molecular Devices, ” NATO ASI Series (1989).

    [18] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and Processable Regioregular Poly(3‐Hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility,” Applied Physics Letters, Vol. 69, pp. 4108 (1996).

    [19] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744 (1998).

    [20] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical Properties of Polyacetylene/ Polysiloxane Interface,” Journal of Applied Physics, Vol. 54, pp. 3255 (1983).

    [21] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New Semiconductor Device Physics in Polymer Diodes and Transistors,” Nature, Vol. 335, pp. 137-141 (1988).

    [22] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene Thin‐Film Transistor with High Carrier Mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

    [23] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the Intrinsic Limits of Pentacene Field-Effect Transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

    [24] Y.Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606 (1997).

    [25] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications,” Journal of Applied Physics, Vol. 80, pp. 2501 (1996).

    [26] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).

    [27] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the Emiconductor/ Insulator Interface in the Characteristics of Π-Conjugated-Oligomer-Based Thin-Film Transistors,” Synthetic Metals, Vol. 51, pp. 419-424 (1992).

    [28] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 Thin Film Transistors,” Applied Physics Letters, Vol. 67, pp. 121, (1995).

    [29] J. Kastner, J. Paloheimo, and H. Kuzmany: in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512-515, (1993).

    [30] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic N-Type Field-Effect Transistor,” Synthetic Metals, Vol. 66, pp. 257 (1994).

    [31] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332 (1996).

    [32] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-Effect Transistors Based on Intrinsic Molecular Semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503 (1990).

    [33] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207 (1998).

    [34] C.D. Dimitrakopoulos, and P.R.L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, pp. 99-117 (2002).

    [35] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, pp. 234-238 (1998).

    [36] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61 (1956).

    [37] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors,” Canadian Journal of Physics. Vol. 34, p. 1356 (1956).

    [38] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Dissertation, University of Cagliari, (2009).

    [39] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, p. 509 (1970).

    [40] C. W Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Dissertation, National Cheng Kung University, Tainan, Taiwan (2006).

    [41] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Materials, Vol, 10, pp. 365377 (1998).

    [42] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on Threshold Voltage Shift in Organic Thin-Film Transistors: Deposition of SiOH on SiO2 Gate-Insulator Surface,” Applied Physics Letters, Vol. 92, pp. 093309 (2008).

    [43] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root Cause of Hysteresis in Organic Thin Film Transistor with Polymer Dielectric,” Organic Electronics, Vol. 7, pp. 271-275 (2006).

    [44] Y. Roichman, and N. Tessler, “Structures of Polymer Field-Effect Transistor: Experimental and Numerical Analyses,” Applied Physics Letters, Vol. 80, p. 151 (2002).

    [45] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, pp.1060-1064 (2001).

    [46] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact Resistance in Organic Thin Film Transistors,” Applied Physics Letters, Vol. 84 (2004).

    [47] S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York, CH. 7 (1981).

    [48] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-Effect Transistor Made from Solution-Procceed Organic Semiconductors,” Synthetic Metals, Vol. 88, p. 37 (1997).
    [49] T. Diekmann, C. Pannemann, and U. Hilleringmann, “Dielectric layers for organic field effect transistors as gate dielectric and surface passivation,” Physics States Solid, (a) 205, No. 3 (2008)

    [50] Y. H. Noh, S. Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics. 7, 271 (2006).

    [51] G. Gu and M. G. Kane, “Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors,” Applied Physics Letters. 92, 053305 (2008)

    [52] David J. Griffiths, Introduction to Electrodynamics, Peraason, 4th edition (2012)

    [53] T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, 516, 1232 (2008).

    [54] T. Umeda, D. Kumaki, and S. Tokito, “High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators,” Organic Electronics. 9, 545 (2008).

    [55] C. L. Fan, M. C. Shang, M. Y. Hsia, S.J. Wang, B.R Huang, and W.D. Lee, “Poly(4-vinylphenol) Gate Insulator with Cross-Linking Using a Rapid Low-Power Microwave Induction Heating Scheme for Organic Thin-Film-Transisitors, ” Applied Materials, Vol. 4, p.036105 (2016).

    [56] C. J. Chiu, Z. W Pei, S.P. Chang, and S.J. Chang, “Influence of Weight Ratio of Poly(4-vinylphenol) Insulator on Electric Properties of InGaZnO Thin-Film Transistor, ” Journal of Nanomaterials, Vol. 2012, (2012).

    [57] H. S Lee, K. H. Lee, C. H. Park, P. J. Jeon, K. Choi, D. H. Kim, H. R. Kim, G. H. Lee, J. H. Kim and S. Im, “Ambient-Protecting Organic Light Transducer Grown on Pentacene-Channel of Photo-Gating Complementary Inverter,” Journal of Materials Chemistry, Vol. 22, p. 4444 (2012).

    [58] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov,
    “Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials,” Physical Review Letters, Vol. 81, p. 4472 (1998).

    無法下載圖示 全文公開日期 2021/07/28 (校內網路)
    全文公開日期 2026/07/28 (校外網路)
    全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE