簡易檢索 / 詳目顯示

研究生: 洪偉倫
Wei-Lun Hong
論文名稱: 液體除濕空調系統在不同操作模態時的參數分析
The analysis of the liquid-desiccant air-conditioning system under different operation modes
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 田維欣
Wei-Hsin Tien
許清閔
Ching-Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 194
中文關鍵詞: 液體除濕空調系統建築室內環境顯熱移除率建築室內環境潛熱移除率
外文關鍵詞: Nanocool iquid-desiccant air-conditioning system, Indoor environment sensible heat removal rate, Indoor environment latent heat removal rate
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討Nanocool液體除濕空調系統在不同操作模態下的室內環境條件,以及分析比較不同操作模態下的重要參數。
    Nanocool液體除濕空調系統是一個混合式的液體除濕系統 (Hybrid liquid desiccant system, HLDS),此系統主要由三大單元組成,分別為空調箱 (Air handling unit, AHU)、液體除濕劑系統 (Liquid desiccant system, LDS)及
    多功能單元 (Polyvalent unit, PU)。此系統於2015年9月開始提供台灣科技大學游泳池更衣室的空調,由於更衣室位於地下室,長期通風不佳,且易生長黴菌,故Nanocool液體除濕空調系統以機械通風 (Mechanical ventilation)的形式
    提供空調,Na-\\nocool液體除濕空調系統有兩個相同型號的風扇,一為供應 (Supply)的風扇,另一為回風 (Return)的風扇,此二風扇供應及回風的質量流率皆相同,使更衣室形成一個平衡通風系統 (Balanced ventilation system)。

    本實驗共有五種操作模態,分別有:
    系統操作模式(一):空調箱、液體除濕劑系統及多功能單元三大單元全開啟;
    系統操作模式(二):空調箱及多功能單元開啟,液體除濕劑系統關閉;
    系統操作模式(三):空調箱及液體除濕劑系統開啟,多功能單元關閉;
    系統操作模式(四):空調箱開啟,液體除濕劑系統及多功能單元關閉;以及
    系統操作模式(五):空調箱、液體除濕劑系統及多功能單元三大單元全關閉。\\
    \indent實驗依據室外環境條件的不同而變換系統的操作模式,並且觀測更衣室內的溫、濕度狀態及熱移除率。
    操作模式(一)用於室外環境空氣溫、濕度皆較高的時候,Exp-1的室外環境空氣溫度35$^o$C,相對濕度約53\%,絕對濕度約19 g/kg,供風空氣溫度21$^o$C,相對濕度約78\%,絕對濕度約12 g/kg,系統的顯熱移除率為13 kW,潛熱移除率為15 kW,
    更衣室內顯熱移除為-7.2 kW,潛熱移除為-11.3 kW,性能係數(COP)1.63。
    操作模式(二)用於室外環境空氣溫度較高,濕度較低的時候,Exp-2的室外環境空氣溫度29$^o$C,相對濕度約67\%,絕對濕度約17 g/kg,供風空氣溫度17$^o$C,相對濕度約77\%,絕對濕度約12 g/kg,系統的顯熱移除率為8.5 kW,潛熱移除率為11.5 kW,
    更衣室內顯熱移除為-7.26 kW,潛熱移除為-10 kW,性能係數(COP)2.91。
    操作模式(二)的性能係數(COP)高於操作模式(一),若比較系統熱移除率操作模式(一)的熱移除表現優於操作模式(二),而且操作模式(一)的更衣室內熱移除率也優於操作模式(二)。
    操作模式(三)用於室外環境空氣溫度較低,濕度較高的時候,Exp-3的室外環境空氣溫度23$^o$C,相對濕度約78\%,絕對濕度約14 g/kg,供風空氣溫度27$^o$C,相對濕度約59\%,絕對濕度約13 g/kg,系統的顯熱移除率為-3 kW,潛熱移除率為1 kW,
    更衣室內顯熱移除率為0.66 kW,潛熱移除率為-3.98 kW。由於操作模式(三)沒有提供冷水給液體除濕劑進行冷卻,當液體除濕劑吸收空氣中的水蒸氣後,潛熱會被釋放,導致空氣的溫度有點上升的狀況。
    操作模式(四)用於室外環境空氣溫度及濕度都較低的時候,Exp-4的室外環境空氣溫度21$^o$C,相對濕度約67\%,絕對濕度約10.6 g/kg,更衣室內顯熱移除率-1.25 kW,潛熱移除率-4.5 kW;
    Exp-4.1的室外環境空氣溫度25$^o$C,相對濕度約87\%,絕對濕度約18 g/kg,更衣室內顯熱移除率-0.39 kW,潛熱移除率-3.98 kW。
    比較Exp-4及Exp-4.1兩組實驗可得知,若室外環境空氣溫、濕度都較低的話,更衣室內的顯熱及潛熱移除率表現都會比較好。


    This study investigates the indoor air properties of the swimming pool locker rooms using the Nanocool liquid-desiccant air-conditioning system under different operation modes,
    and analyzes the important parameters under different operation modes. Nanocool liquid-desiccant air-conditioning system is a hybrid liquid desiccant system (HLDS),
    the system is consist of three units, the air handling unit (AHU), the liquid desiccant system (LDS) and the polyvalent unit (PU).
    The system was used to supply the conditioned air in the locker rooms of the swimming pool in Taiwan Tech on September, 2015,
    because the locker rooms are placed in basement make the ventilated effect is disadvantageous, and make the mold grow easily,
    so the Nanocool liquid-desiccant system is the form of mechanical ventilation to supply conditioned air to locker rooms,
    and there are two the same fans in Nanocool liquid-desiccant system, one is supply and the other one is return, and the air flow rate of these two fans are the same,
    those make the locker rooms form a balanced ventilation system.

    There are five operation modes for this experiment: the operation mode 1: the air handling unit (AHU), the liquid desiccant system (LDS) and the polyvalent unit (PU) are turned on;
    the operation mode 2: the air handling unit (AHU) and the polyvalent unit (PU) are turned on, the liquid desiccant system (LDS) is turned off;
    the operation mode 3: the air handling unit (AHU) and the liquid desiccant system (LDS) are turned on, the polyvalent unit (PU) is turned off;
    the operation mode 4: the air handling unit (AHU) is turned on, the liquid desiccant system (LDS) and the polyvalent unit (PU) are turned off;
    the operation mode 5: the air handling unit (AHU), the liquid desiccant system (LDS) and the polyvalent unit (PU) are turned off.\\
    \indent According to the different ambient air conditions and change the system operation modes, and observe the air temperature, humidity and the heat removal rates of the locker rooms.
    The operation mode 1 operating for the ambient air temperature and humidity are higher, the Exp-1 ambient air temperature is 35$^o$C, the relative humidity is 53 \% and the humidity ratio is 19 g/kg,
    and the supply air temperature is 21$^o$C, the relative humidity is 78 \%, and the humidity ratio is 12 g/kg, the system sensible heat removal rate is 13 kW, the latent heat removal rate is 15 kW,
    the locker room sensible heat removal rate is -7.2 kW, the latent heat removal rate is -11.3 kW, the COP is 1.63.
    The operation mode 2 operating for the ambient air temperature is higher and humidity is lower, the Exp-2 ambient air temperature is 29$^o$C, the relative humidity is 67 \%, and humidity ratio is 17 g/kg,
    and the supply air temperature is 17$^o$C, the relative humidity is 77 \%, and the humidity ratio is 12 g/kg, the system sensible heat removal rate is 8.5 kW, the latent heat removal rate is 11.5 kW,
    the locker room sensible heat removal rate is -7.26 kW, the latent heat removal rate is -10 kW, the COP is 2.91.
    The COP of the operation mode 2 is higher than that of the operation mode 1, but the system and locker rooms of the heat removal rates of the operation mode 1 are better than those of the operation mode 2.
    The operation mode 3 operating for the ambient air temperature is lower and the humidity is higher, the Exp-3 ambient air temperature is 23$^o$C, the relative humidity is 78 \%, and humidity ratio is 14 g/kg,
    and the supply air temperature is 27$^o$C, the relative humidity is 59 \%, and the humidity ratio is 13 g/kg, the system sensible heat removal rate is -3 kW, the latent heat removal rate is 1 kW,
    the locker room sensible heat removal rate is 0.66 kW, the latent heat removal rate is -3.98 kW. There is no cold water to cool the liquid desiccant, when the liquid desiccant absorb the water vapor,
    the latent is released and the process air temperature increases.
    The operation mode 4 operating for the ambient air temperature and humidity are lower, the Exp-4 ambient air temperature is 21$^o$C, the relative humidity is 67 \%, humidity ratio is 10.6 g/kg,
    the locker rooms sensible heat removal rate is -1.25 kW, the latent heat removal rate is -4.5 kW. The Exp-4.1 ambient air temperature is 25$^o$C, the relative humidity is 87 \%, and humidity ratio is 18 g/kg,
    the locker rooms sensible heat removal rate is -0.39 kW, the latent heat removal rate is -3.98 kW. Comparing the Exp-4 and the Exp-4.1, the ambient air temperature and the humidity are lower, the locker rooms heat removal rate are better.

    中文摘要 英文摘要 致謝 符號索引 表目錄 圖目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻回顧 1.2.1 冷凝除濕 1.2.2 吸附式除濕 1.2.2.1 固體除濕 1.2.2.2 液體除濕 1.2.3 搭配其它系統的液體除濕機制 1.3 論文架構及內容 第二章 基礎理論 2.1 濕空氣線圖介紹 2.1.1 濕空氣線圖參數 2.1.2 基本空調過程 2.2 濕空氣學理論 2.2.1 乾空氣與濕空氣 2.2.2 濕空氣的熱力性質 2.3 空氣的質傳率及熱傳率 2.3.1 空氣的體積流率計算 2.3.2 空氣的質量流率計算 2.3.3 空氣的熱傳率計算 2.4 系統的性能係數計算 第三章 實驗設備及方法 3.1 Nanocool 液體除濕系統介紹與應用 3.1.1 Nanocool 液體除濕系統介紹 3.1.2 Nanocool 液體除濕系統應用 3.2 Nanocool 液體除濕系統運作原理 3.2.1 空調箱 (Air Handling Unit, AHU) 3.2.2 液體除濕劑系統 (Liquid Desiccant System, LDS) 3.2.3 多功能單元 (Polyvalent Unit, PU) 3.3 系統之控制器介紹 3.4 Nanocool 液體除濕空調系統各監測點 3.5 實驗方法 3.6 設備故障排除與維修 3.6.1 多功能單元熱水迴路壓力過高 3.6.2 電磁閥更換 第四章 實驗結果與討論 4.1 實驗系列 4.1.1 系統操作模式(一) 4.1.2 系統操作模式(二) 4.1.3 系統操作模式(三) 4.1.4 系統操作模式(四) 4.1.5 系統操作模式(五) 4.2 各監測點之溫度與濕度量測結果及除濕過程 4.2.1 各監測點之溫度與濕度量測結果 4.2.2 除濕過程 4.3 供風空氣質量流率及空氣交換率 4.4 環境濕空氣與液體除濕劑之表面蒸氣壓計算 4.5 除濕過程之熱傳計算結果 4.5.1 除濕過程之顯熱計算 4.5.2 除濕過程之潛熱計算 4.6除濕過程之質傳計算結果 4.7性能係數(COP)計算結果 4.8系統各操作模式之參數比較 4.9熱舒適範圍 4.10不同操作模式適用範圍 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1] The Healthy House Institute
    [2] Seiichi Yamaguchi and Kiyoshi Saito (2013). Numerical and experimental performance analysis of rotary desiccant wheels. International Journal of Heat and Mass Transfer. 60, 51-60.
    [3] C.X. Jia, Y.J. Dai, J.Y. Wu, R.Z. Wang (2006). Analysis on a hybrid desiccant air-conditioning system. Applied Thermal Engineering. 26, 2393-2400.
    [4] B. Shaji Mohan, M. Prakash Maiya, Shaligram Tiwari (2008). Performance characterisation of liquid desiccant columns for a hybrid air-conditioner. Applied Thermal Engineering. 28, 1342-1355.
    [5] Hiroshi Yoshino, Napoleon Enteria, Hazim Awbi (2017). Desiccant Heating, ventilating, and Air-Conditioning Systems. Springer Nature. ISBN: 978-981-10-3047-5
    [6] Tao Zhang, Xiaohua Liu, Jingjing Jiang, Xiaoming Chang, Yi Jiang (2013). Experimental analysis of an internally-cooled liquid desiccant. Building and Environment. 63, 1-10.
    [7] K. Gommend, G. Grossman (2007). Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy. 81, 131-138.
    [8] L. Mei, Y.J. Dai (2008). A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews. 12, 662-689.
    [9] 交通部中央氣象局
    [10] Andrew Lowenstein (2008). Review of Liquid Desiccant Technology for HVAC Applications. American Socienty of Heating, Refrigerating and Air-Conditioning Engineers.
    [11] Nelson Fumo \& D.Y.Goswami (2002). Study of aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Solar Energy. 4, 351-361.
    [12] Handbook (2001). ASHRAE HVAC 2001 fundamentals handbook. American Socienty of Heating, Refrigerating and Air-Conditioning Engineers.
    [13] S.A. Abdule-Wahab, Y.H. Zurigat, M.K. Abu-Arabi (2004). Preditions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier. Energy. 29, 19-34.
    [14] Agung Bakhtiar, Fatkhur Rokhman, Kwang Hwan Choi (2012). A noval method to evaluate the performance of liquid desiccant air dehumidifier system. Energy and Buildings. 29, 39-44.
    [15] Baruch Givoni (1992). Comfort, climate analysis and building design guidelines. Energy and Buildings. 18, 11-23.
    [16] Mark W. Zemansky \& Richard H. Dittman (1981). Heat and Thermodynamics. McGraw-Hill. ISBN: 0-07-066647-4.
    [17] Faye C. McQuiton, Jerald D. Parker, Jeffrey D. Spitler (2005). Heating, Ventilating, and Air Conditioning. Analysis and Design. WILEY. ISBN: 0-471-66154-6.
    [18] Cengel, Y. A., \& Boles, M. A. (2007). Thermodynamics An Engineering approach. McGraw-Hill. ISBN: 978-007-125771-8.
    [19] Hazim Awbi (2008). Ventilation System. Taylor & Francis. ISBN: 978-0-419-21700-8.
    [20] Yonggao Yin, Junfei Qian, Xiaosong Zhang (2014). Recent advancements in liquid desiccant dehumidification technology. Renewable and Sustainable Energy Reviews. 31, 38-52.
    [21] L.Alonso, X.Pena, C.Pascual, J.Prieto, J.Ortiga, K.Gommed (2015). Design, simulation and testing of a hybrid liquid desiccant for independent control of temperature and humidity. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districs Sustainability from Nano to Urban Scale. EPFLCONF-213339, 333-338.
    [22] 高志承,2016,觀測獨立控制濕度與溫度空調系統之性能。台灣科技大學碩士論文。
    [23] 賴彥旻,2017,探討供應風量與冰水流量對於液體除濕空調系統性能表現之研究。台灣科技大學碩士論文。
    [24] 陳勝宏,2019,觀測液體除濕空調系統使用不同操作模式下的性能表現。台灣科技大學碩士論文。

    QR CODE