簡易檢索 / 詳目顯示

研究生: 蘇彗佳
Putu - Mas Satvika Ganitri
論文名稱: 混合型共同安定劑(LMA/n-Alkane)對苯乙烯迷你乳液之奧斯瓦老化效應的影響
Effects of Mixed Costabilizers on the Ostwald Ripening of Styrene Miniemulsion : LMA/n-Alkane
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 林析右
Shi-Yow Lin
許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 179
中文關鍵詞: 迷你乳液奧士瓦老化速率混合型共同安定劑甲基丙烯酸十二酯正烷烴
外文關鍵詞: Miniemulsions, Ostwald Ripening, Mixed Costabilizers, LMA, n-Alkanes
相關次數: 點閱:138下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

包括苯乙烯(St)為單體的細乳液系統Ostwald熟化率,無論是單一的costabilizer十二烷基甲基丙烯酸酯(LMA)和各種正構烷烴(癸,十二烷,十六烷和四烷)或混合型喉罩/穩定costabilizer濃度的影響正構烷烴進行了調查。 。準備使用表面活性劑(SDS)和喉罩或混合喉罩/正烷烴和使用sonicator均質分散在水中的ST miniemulsions。 Ostwald熟化率的數據,只能跟著Kabalnov低costabilizer體積分數方程。在更高的costabilizer體積分數,他們偏離作為的costabilizer體積分數增加顯著。經驗公式1/Ro=1/Ro1(1+K1φ2+K2φ22)Ostwald熟化率的實驗數據擬合。 K1的值是ST/罩(9.98×104),ST/癸烷(4.49×104),ST/十二烷(1.30×105),ST/十六烷(3.45×105)和ST /四烷(4.16×105)。
阻燃Ostwald熟化易出現三個組成部分的LMA和n-烷烴的混合costabilizers在驅散相單體miniemulsions的作用進行了研究。改良Kabalnov方程失敗來形容Ostwald熟化行為。因此,分散細乳液的階段,包括單體ST和LMA和n-烷烴mised costabilizers只是作為一個偽雙組分分散處理​​相細乳液體系。所有的結果是自洽的一證明擬議偽兩個組件的有效性分散相細乳液聚合模型。在這項研究中觀察到的一個獨特功能是協同作用在延緩Ostwald熟化過程中的混合cotabilizers,LMA和n-烷烴效果。在混合costabilizer LMA和正構烷烴被發現的長鏈正構烷烴,從方程(1/R0,cmix= fLMA/R0,LMA+(1 fLMA)/ R0的,正烷烴的協同作用效果的偏差)。


The effect of costabilizer concentration on the Ostwald ripening rate of miniemulsion systems comprising Styrene (ST) as monomers, and stabilized by either single costabilizer Lauryl Methacrylate (LMA) and various n-Alkane (Decane,Dodecane,Hexadecane and Tetracosane) or mixed LMA/ n-Alkane was investigated. . The miniemulsions were prepared by dispersing ST in water using surfactant (SDS) and either LMA or mixed LMA/n-Alkane and to homogenize using sonicator. The Ostwald ripening rate data only follow Kabalnov’s equation at low costabilizer volume fractions. At higher costabilizer volume fractions, they deviated significantly as the costabilizer volume fraction was increased. An empirical equation 1/Ro = 1/Ro1(1+K1φ2+K2φ22) was fitted into the experimental data of the Ostwald ripening rate. The K1 values obtained are ST/LMA (9.98 x 104), ST/Decane (4.49 x 104), ST/Dodecane (1.30 x 105), ST/Hexadecane (3.45 x 105) and ST/Tetracosane (4.16 x 105).
The role of mixed costabilizers of LMA and n-Alkane in retarding Ostwald ripening occuring three-component disperse phase monomer miniemulsions was investigated. The modified Kabalnov equation failed to describe the Ostwald ripening behavior. Thus , the miniemulsion disperse phase comprising monomer ST and the mised costabilizers of LMA and n-Alkane was simply treated as a pseudo-two-component disperse phase miniemulsion system. All the results that are self-consistent with one another justify the validity of the proposed pseudo-two component disperse phase miniemulsion model. A unique feature observed in this study is the synergitic effect of the mixed cotabilizers of LMA and n-Alkane in retarding the Ostwald ripening process. In mixed costabilizer LMA and n-Alkane was found that the longer chain of n-Alkane shown a deviation from the synergitic effect equation (1/R0,cmix = fLMA/R0,LMA + (1-fLMA)/R0,n-Alkane ).

ACKNOWLEDGEMENT i TABLE OF CONTENTS ii LIST OF FIGURES iv LIST OF TABLES vii ABSTRACT viii Chapter I Introduction 1 1.1 Emulsion 1 1.2 Emulsion Stability 2 1.3 Miniemulsion 3 1.4 About this Research 4 Chapter II Literature Survey 6 2.1 Miniemulsion Stability 6 2.2 Preparation of Miniemulsions 9 2.2.1 Formulation 9 2.2.2 Method of Preparation 11 2.3 Ostwald Ripening Rate 14 Chapter III Experimental 31 3.1 Chemicals 31 3.2 Equipments 31 3.2.1 Major Equipment 31 3.2.2 Others Equipments Used 32 3.2.3 Apparatus Used 32 3.3 Experimental Procedure 32 3.3.1 Preparation of Miniemulsion 32 3.3.2 Miniemulsion with two costabilizer 33 3.3.3 Measurement of Monomer Droplet Size or Latex Particle Size by Dynamic Light Scattering (DLS) 34 3.3.4 Formulation of dilution solution 34 3.4 Schematic Diagram of Experimental Procedure 36 3.5 Experimental Set-up 38 Chapter IV Result and Discussion 44 4.1 Miniemulsion Stability 44 4.1.1 Monomer Droplet Degradation upon Aging 44 4.1.2 Effect of Monomer Composition on Ostwald Ripening Rate 46 4.1.3 Modelling of the Experimental Data 52 4.2 Miniemulsion system with mixed two costabilizers 56 4.3 Mechanism of Ostwald Ripening 73 Chapter V Conclusion 78 References 80 Appendix Raw Data 82

1. Garrett, E.R, J. Pharm. Sci. 51 (1962) 35.
2. Vincent, B., in: Th.F. Tadros (Ed.), Surfactants, Academic Press, London, 1984.
3. Ugelstad, J. El-Aasser, MS, Vanderhof, JW, J Polym. Sci. Letter Ed 11 (1973) 50313
4. Davis, S.S.; Smith, A., Theory and practice of emulsion technology; New York: Academic Press 1976. p. 325.
5. Higuchi, W.I.; Misra, J., J Pharm Sci 1962, 51, 459
6. Taylor, P. Advances in Colloids and Interface Science, 75 (1998) 107-163
7. Soma, J., Papadopoulos, K.D., J. Colloid Interface Sci. 181 (1996) 225.
8. Chern, C.S.; Chen T.J., Colloids Surface A 138 (1998) 65-74.
9. Chern, C.S.; Liou Y.C., Macromol Chem Phys 199 (1998) 2051.
10. Chern , C.S.; Liou Y.C., Polymer 40 (1999) 3763.
11. Coates, M., Connell, D.W., Barron, D.M., Environ. Sci. Technol. 19 (1985) 231.
12. Asua, J.M., Prog. Polym Sci. 27 (2002) 1283.
13. Azad, A.R.M.; Fitch, R.M. (1980) In: Polymer Colloids II. Plenum, New York, p 95.
14. Schork FJ, Luo Y, Smulder W, Russum JP, Butte A, Fontenot K. Adv Polym . Sci. 175 (2005) 129-255.
15. Rodriguez VS,Delgado J,Silebi CA,El-Aaseer MS. Interparticle monomer transport in miniemulsions.Ind Eng Chem Res 28 (1989) 65-74
16. Voorhees, P.W.; Glicksman, M.E., Acta Met 1986, 32, 2013.Taylor P., Adv Colloid Interface Science 75 (1998) 107-163
17. Kabalnov, A.S, Pertzov, AV, Shchukin, ED., Colloids Surf. 24 (1987). 19.
18. Thomson, W. (Lord Kelvin), Proceedings of the Royal Society, Edinburgh, 7 (1871) 63.
19. Skinne,r L.M., Sambles J.R., Aerosol J. Sci. 3 (1972) 199.
20. Dunning, W.J. in: A.L. Smith (Ed.), Particle Growth in Suspensions, SCI Monograph No. 38,Academic Press, London, 1973.
21. Lialikov, C.S., Piscounova, V.N., Chipilov, J.P., Cordycev, C.V., IX Congress Intern. de Photographie Scientifique et Appliquee Paris 1935, p. 277.
22. Ramsey, A.S., A Treatise on Hydrodynamics, part II, G. Bell, London, 1947.
23. Lifshitz, I.M., Slezov, V.V., J. Phys. Chem. Solids 19 (1961) 35.
24. Lifshitz, I.M., Slezov, V.V., Soviet Physics J.E.T.P., 35 (1959) 331 (English Translation).
25. Wagner, C., Ber. Bunsenges. Phys. Chem. 65 (1961) 581.
26. Sugimoto, T., J. Colloid Interface Sci. 63 (1978) 369.
27. Higuchi, W.I., A.H. Goldberg, J. Pharm. Sci. 58 (1969) 1342.
28. Yotsuyanagi, T., Higuchi, W.I., Ghanem A.H., J. Pharm. Sci. 62 (1973) 40.
29. Tauer, K., Polymer 2005, 46, 1885.
30. Kabalnov, A.S.; Makarov, K.N.; Pertzov, A.V.; Shchukin, E.D., J Colloid Interface Sci 1990, 138 (1), 98.
31. Chern, C.S.; Lin, C.H., J Applied Polymer Sci. 92 (2004) 1961.Lifshitz, I.M.; Slezov, V.V., J Phys Chem Solids 1961, 19, 35.
32. Taylor, P., Ottewill R.H. Prog Colloid Polymer Sci 97 (1994) 199.
33. Heller, W.; Bhatnager, H.C.; Nakagaki, M., J Chem Phys 1962, 36, 1163.Wood RW, Loomis AL. Phil Mag 4 (927) 417
34. Y., Meliana , Suprianti ,L. , Huang, Y.C. , Lin, C.T.,, Chern, C.S., Colloids and Surface A : Physicochem. Eng. Aspects 389 (2011) 76-81.
35. E., Fuguet , C., Rafols , M., Roses ,E., Bosch . Analytica Chimica Acta 548 (2005) 95-100
36. Y., Meliana , Calaa,N.A, Lin, C.T. , Chern, C.S. ,J. Dispersion of Sci. 31 (2010) 1568-1573.

QR CODE