簡易檢索 / 詳目顯示

研究生: 黃崇閔
Chung-min Huang
論文名稱: 在IEEE 802.15.4低速率無線個人區域網路下之適應性使用保證時槽傳輸機制研究
Adaptive Transmission Using Guarantee Time Slot (ATUGTS) in IEEE 802.15.4 LR-WPAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 余聲旺
Sheng-Wang YU
吳傳嘉
Zhuan-Jia Wu
鍾添曜
Tein-Yaw Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 無線感測網路適應性保證時槽
外文關鍵詞: wireless sensor network, adaptive, guarantee time slot
相關次數: 點閱:374下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor network ; WSN)經常被使用於軍事、農業、建築等需要大涵蓋範圍及長運作時間的應用。為了滿足此類應用需求並延長網路壽命,無線感測網路中的感測節點數量必須隨著涵蓋範圍增大而隨之增加。然而,大量密集配置感測節點將提高傳輸時的碰撞機率,此一現象將大幅降低無線感測網路的有效產能並減少網路整體的使用時間。
    在IEEE 802.15.4的競爭存取週期(contention access period ; CAP)中,感測節點使用CSMA/CA機制進行資料的傳輸,此種方式在網路流量負載較低的環境中具有高傳輸效率。然而,當感測節點數量增加及網路負載增加時,此種方式將提高傳輸時的碰撞機率,因此造成有效產能大幅下降。此外,為了滿足固定頻寬需求及時間急迫性的應用,IEEE 802.15.4 標準定義了免競爭週期(contention free period ; CFP ),使得感測節點得以使用免競爭的方式進行傳輸,此種方式在中低網路負載下有較低的頻寬使用率,但在高網路負載有效避免碰撞,因而具有較高頻寬使用率。因此,若能依照目前網路的負載及相關參數,讓感測節點動態的於此二種方式間進行切換,將可有效的提高網路的整體效率。
    為了能夠結合兩者優點,我們提出適應性使用保證時槽傳輸機制(adaptive transmission using guarantee time slot; ATUGTS),讓感測節點可以適應性向協調者要求使用免競爭週期傳輸資料。並且協調者將優先分配免競爭週期給保證時槽使用率最高的感測節點,進而提升整體網路效能。從模擬結果得知我們所提出的方法在有效產能、能量消耗、保證時槽使用率均結合了兩者的優點,且都有較好的表現。


    Wireless sensor networks are often used in military, agriculture, construction and other needs of large coverage and long operating hours of the applications. In order to meet the needs of such applications and to extend the network lifetime, wireless sensor network must increase the number of sensor nodes as the network coverage become bigger. However, a large number of sensor nodes will increase the probability of transmission collision, and this is the main cause to decrease entire network goodput and reduce the network's lifetime.
    By IEEE 802.15.4 standard, in contention access period (CAP), sensor nodes use CSMA/CA algorithm to access channel before transmitting data, and this method will have high efficiency when the traffic load is low. Besides, this method will decrease performance when the number of sensor nodes increase and heavy traffic load. In order to meet the need of fixed bandwidth and time sensitive application, IEEE 802.15.4 standard define another transmission period called contention free period (CFP), under this period that sensor nodes can transmit data without contention. Although using CFP under low traffic load can cause lower bandwidth utilization, but this method can effectively avoid collision and increase bandwidth utilization when traffic load is heavy. According to traffic load and other parameter, if we can dynamically change sensor transmit method between CAP and CFP, we can improve whole network transmission efficiency.
    In order to combine both advantages, we propose adaptive transmission using guarantee time slot (ATUGTS), that sensor nodes can adaptively request using contention free portion to transmit data. The coordinator will be in accordance with the required size of the transmission slot allocated to the most appropriate sensor nodes to enhance the overall network performance. From the simulation results, the proposed method shows better performance in goodput, power consumption, utilization of guarantee time slot which has the advantages of the combination of only using CAP and only using CFP.

    中文摘要 iv 英文摘要 v 目次 vii 圖目次 ix 表目次 xi 第一章 緒論 1 1.1簡介 1 1.2研究動機與目的 2 1.3章節概要 4 第二章 IEEE 802.15.4標準介紹 5 2.1 IEEE 802.15.4標準簡介 5 2.2 IEEE 802.15.4標準之網路拓樸結構介紹 6 2.3 IEEE 802.15.4標準之實體層介紹 7 2.4 IEEE 802.15.4標準之媒介存取控制副層介紹 9 第三章 適應性使用保證時槽傳輸介紹 25 3.1 系統介紹 25 3.2 感測節點流程 28 3.3 協調者流程 30 3.4 範例說明 31 第四章 系統模擬與結果 35 4.1 模擬環境及參數說明 35 4.2 效能評估項目 37 4.2.1 有效產能(goodput) 37 4.2.2平均傳輸延遲(total delay per packet) 37 4.2.3封包丟棄率(packet drop ratio) 38 4.2.4 能量消耗(energy consumption) 38 4.2.5 保證時槽使用率(GTS utilization) 39 4.3 結果分析與比較 40 4.3.1 有效產能分析與比較 40 4.3.2 平均傳輸延遲分析與比較 43 4.3.3 封包丟棄率分析與比較 45 4.3.4 能量消耗分析與比較 48 4.3.5 保證時槽使用率分析與比較 50 第五章 結論與未來研究 53 參考文獻 54

    [1] Y.C. Tay, K. Jamieson, H. Balakrishnan, “Collision-minimizing CSMA and its applications to wireless sensor networks,” IEEE Journal on Communications, Vol. 22, issue 6, pp. 1048 – 1057 (2004)
    [2] W. Ye, J. Heidemann, D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” in Proceeding of 21st Conference of the IEEE Computer and Communications Societies, Vol. 3, pp. 1567-1576 (2002)
    [3] I. F. Akyildiz, W. Su, Y. Sankarasubmmaiam, E. Cayirci, “A Survey on Sensor Networks,” in IEEE Communication Magazine, pp. 102-114 (2002)
    [4] F. Zhao, ”Wireless Sensor Networks : A New Computing Platform for Tomorrow’s Internet,” in Proceeding of IEEE 6th Circuits and Systems Symposium, Vol. 1, pp. 1-27 (2004)
    [5] J. A. Guierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in Proceeding of IEEE, Vol. 3, pp. 1869-1869 (2004)
    [6] C. L. Yau, W. Y. Chung, “IEEE 802.15.4 Wireless Mobile Application for Healthcare System,” in Proceeding of Convergence Information Technology, pp. 1433-1438 (2007)
    [7] L. Q. Zhuang, K. M. Goh, J. B. Zhang, “The wireless sensor networks for factory automation : Issue and challenges,” in Proceeding of Emerging Technologies & Factory Automation, pp. 141-148 (2007)
    [8] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4 (2003)
    [9] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4 (2006)
    [10] G. Lu, B. Krishnamachari, C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low power wireless Networks,” in Proceeding of IEEE IPCCC, pp. 701-706 (2004)
    [11] J. Carle, D. R. Simplot, “Energy-efficient area monitoring for sensor networks,” in Computer Society, Vol. 37, issue 2, pp. 40-46 (2004)
    [12] S. D. Muruganathan, D. C. F. Ma, R. I. Bhasin, A. O. Fapojuwo, “A centralized energy-efficient routing protocol for wireless sensor networks,” in IEEE Communication Magazine, Vol. 43, issue 3, pp. 8-13, Mar. 2005.
    [13] L. Cheng, A. G. Bourgeois, “Energy efficient of different data transmission methods in IEEE 802.15.4 : study and improvement,” in Proceeding of ISWPC, pp. 395-400 (2007)
    [14] P. Lin, C. Qiao, X. Wang, “Medium access control with a dynamic duty cycle for sensor networks,” in Proceeding of Wireless Communications and Networking, Vol. 3, pp. 1534-1539 (2004)
    [15] S.B. Eisenman, A.T. Campbell, “E-CSMA: Supporting Enhanced CSMA Performance in Experimental Sensor Networks Using Per-Neighbor Transmission Probability Thresholds,” in Proceeding of IEEE International Conference on Computer Communications, pp. 1208 – 1216 (2007)
    [16] M. Bertocco, G. Gamba, A. Sona, S. Vitturi, “Performance Measurements of CSMA/CA-Based Wireless Sensor Networks for Industrial Applications,” in Instrumentation and Measurement Technology Conference Proceedings, pp. 1-6 (2007)
    [17] R. Verdone, F. Fabbri, C. Buratti, “Area Throughput for CSMA based Wireless Sensor Networks,“ in Proceeding of IEEE Personal, Indoor and Mobile Radio Communications, pp. 1-6 (2008)
    [18] M. Miskowicz, “Performance analysis of slotted-CSMA with geometric distribution,” in Factory Communication Systems, pp. 21-29 , May. 2008.
    [19] Ying Wang, Tong Li, Mudi Xiong, “Performance Analysis of CSMA with Preamble Sampling for Multi-hop Wireless Sensor Networks,” in Proceedings of ITS Telecommunications , pp. 921-924 (2006)
    [20] Y. Kiri, M. Sugano, M. Murata, “Performance Evaluation of Intercluster Multi-hop Communication Large-Scale Sensor Networks,” in Computer and Information Technology, pp. 215 (2006)
    [21] Chen Zhijia, Chuang Lin,Hao Wen, Hao Yin, “An Analytical Model for Evaluating IEEE 802.15.4 CSMA/CA Protocol in Low-Rate Wireless Application,“ in Advanced Information Networking and Applications Workshops, Vol 2, pp. 809-904 (2007)
    [22] A. Koubaa, M. Alves, E. Tovar, “i-GAME: an implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks,” in Real-Time Systems Euromicro Conference, pp. 183 – 192 (2006)
    [23] A. Koubaa, M. Alves, E. Tovar, “GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks,” in Parallel and Distributed Processing Symposium, pp 25-29 (2006)
    [24] P. Jurcik, A. Koubaa, M. Alves, E. Tovar, Z. Hanzalek, “A Simulation Model for the IEEE 802.15.4 protocol: Delay/Throughput Evaluation of the GTS Mechanism,” in Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 109 – 116 (2007)
    [25] Yong-Geun Hong, Hyoung-Jun Kim, Hee-Dong Park, Do-Hyeon Kim, “Adaptive GTS allocation scheme to support QoS and multiple devices in 802.15.4,” in Advanced Communication Technology International Conference ,Vol. 3, pp. 1697 – 1702 (2009)
    [26] Liang Cheng, Bourgeois. A.G, Xin Zhang, “A Performance Comparison Study of GTS Allocation Schemes in IEEE 802.15.4,” in Future generation communication and networking ,Vol. 2, pp. 356 – 361 (2007)
    [27] Yu-Kai Huang, Ai-Chun Pang, Hui-Nien Hung, “An Adaptive GTS Allocation Scheme for IEEE 802.15.4,” in Parallel and Distributed Systems, IEEE Transactions, Vol. 19, issue 5, pp. 641 – 651 (2008)
    [28] Liang Cheng, Bourgeois. A.G, Xin Zhang, “A new GTS allocation scheme for IEEE 802.15.4 networks with improved bandwidth utilization,” in Communications and Information Technologies, International Symposium , pp.1143 – 1148 (2007)
    [29] JunKeun Song, Jeong-dong Ryoo, SangCheol Kim, JinWon Kim, HaeYong Kim, PyeongSoo Mah, “A Dynamic GTS Allocation Algorithm in IEEE 802.15.4 for QoS guaranteed Real-time Applications,” in Consumer Electronics, IEEE International Symposium, pp.1 – 6 (2007)
    [30] Yu-Kai Huang, Ai-Chun Pang, Tei-Wei Kuo, “AGA: Adaptive GTS Allocation with Low Latency and Fairness Considerations for IEEE 802.15.4,” in Communications IEEE International Conference, Vol. 9, pp. 3929 – 3934 (2006)
    [31] Youling Zhou, Yi Wang, Jianhua Ma, Junpin Jia, Furong Wang, “A Low-Latency GTS Strategy in IEEE802.15.4 for Industrial Applications,” in Future Generation Communication and Networking Second International Conference ,Vol. 1, pp. 411 – 414 (2008)
    [32] Chipcon corporation, “Data sheet for CC2420 2.4GHz IEEE 802.15.4/Zigbee RF Transceiver,” (2004)

    QR CODE