簡易檢索 / 詳目顯示

研究生: 葉侑哲
YOU-CHE YEH
論文名稱: 數位化電壓隨耦控制功率因數修正器之研製
Design and Implementation of a Digitally- Voltage-Follower Controlled Power Factor Correction
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 67
中文關鍵詞: 功率因數修正器電壓隨耦控制法數位定頻
外文關鍵詞: power factor corrector, voltage-follower control, Digital fixed frequency
相關次數: 點閱:192下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,政府及相關用電單位皆要求許多到達一定功率級別的交流供電系統需裝設功率因數(Power Factor Correction)修正電路,良好的功率因數修正器可有效降低輸入電源之視在功率以及總諧波失真。另一方面,數位控制具有較佳抗雜訊干擾能力,也能較輕易實現複雜的控制系統。隨著運算能力日漸提高以及較低的成本,數位控制系統也被廣泛應用在市面上的電源轉換器。
本文實際完成一數位化功率因數修正電路,功率級採用升壓型轉換器,並以數位電壓隨耦控制法實現,數位控制器的部分採用Microchip dsPIC33F16GS502作為控制核心,最後,透過此實際完成之功率因數修正器的實驗結果來驗證此論文所提出之數位電壓隨耦控制之正確性。
關鍵詞:功率因數修正器、電壓隨耦控制法、數位定頻


Abstract
Many ac-powered systems above a certain power level require power factor correction (PFC) circuits, which is demanded by the utility or the government. An effective PFC can reduce the apparent power required as well as the total harmonic distortion of the input line current. On the other hand, digital control boasts advantages such as reduced sensitivity to noise and the capability to realize sophisticated control algorithms. With the rapid increase of the computational power and the reduction of cost, digital controllers gain its popularity in implementing power converters.
In this thesis, the digital control for power factor correction circuit is studied. The power stage of the PFC is a boost converter. Using this prototyping circuit, a digital voltage follower PFC will be realized. The digital control algorithms is implemented using the Microchip dsPIC33F16GS502 digital signal controller (DSC). Finally, experimental results of this PFC circuits are provided to validate the correctness of the proposed digital control algorithm.

Keywords: power factor corrector, voltage-follower control、Digital Fixed
Frequency

目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 X I 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文大綱 2 第二章 功率因數修正電路原理簡介 4 2.1功率因數與諧波失真之定義 4 2.2功率因數修正器之種類 7 2.2.1 被動式功率因數修正器 7 2.2.2主動式功率因數修正器 9 2.3 功率因數修正器之操作模式介紹 10 2.4 功率因數修正器之控制模式介紹 13 2.4.1 電壓隨耦控制法 13 2.4.2 峰值電流控制法 14 2.4.3 磁滯電流控制法 15 2.4.4 平均電流控制法 16 2.4.5 箝位電流控制法 17 第三章 電路參數設計 19 3.1電壓隨耦模式控制介紹 19 3.2電路設計規格 24 3.2.1 整流二極體選擇 24 3.2.2 橋式整流設計 24 3.2.3 儲能電感設計 25 3.2.4 功率電晶體的選擇 27 3.2.5 輸出電容設計 28 3.2.6 輸出二極體設計 28 3.3取樣電路設計 29 3.3.1 輸出電壓取樣電路設計 29 3.3.2 硬體電路佈局(Layout)考量 30 第四章 數位控制功率因數修正器 31 4.1 dsPIC33F16GS502數位信號控制器簡介 31 4.2系統架構 33 4.3 基本程式功能介紹 34 4.3.1 類比/數位轉換(Analog to Digital Converter) 35 4.3.2 數位濾波器 36 4.3.3數位PID補償器 45 4.3.4 脈波寬度調變(PWM)模組 49 4.4 電壓隨耦控制法之程式流程規劃 50 第五章 實驗結果與討論 52 第六章 結論與未來展望 62 6.1 結論 62 6.2 未來研究方向 63 參考文獻 64 圖目錄 圖2.1 橋式整流電路及波形失真示意圖 5 圖2.2 被動式功率因數修正器架構圖 8 圖2.3 並聯式主動型電力濾波器方塊圖 9 圖2.4 串聯式功率因數修正器方塊圖 10 圖2.5 升壓型功率修正器之連續導通模式 10 圖2.6 升壓型功率修正器之不連續導通模式 11 圖2.7 升壓型功率修正器之臨界導通模式 12 圖2.8 不連續導通模式升壓式功率因數修正器控制方塊圖 12 圖2.9 電壓隨耦控制模式電路 13 圖2.10峰值電流控制模式電路 14 圖2.11磁滯電流控制法電流示意圖 16 圖2.12平均電流控制模式電路 17 圖2.13箝位電流法控制迴路 18 圖3.1 升壓型功因修正器電路圖 19 圖3.2 升壓型轉換器操作模式一 20 圖3.3 升壓型轉換器操作模式二 20 圖3.4 升壓型轉換器操作模式三 21 圖3.5 電感電壓(VL)之伏-秒平衡波形圖 22 圖3.6 電壓隨耦控制法之波形 23 圖3.7 輸出電壓取樣電路 29 圖4.1 dsPIC33F16GS502系列內建功能方塊示意圖 33 圖4.2 dsPIC33F16GS502接腳圖 33 圖4.3數位控制型功率因數修正器電路架構 34 圖4.4 A/D觸發與中斷副程式流程圖 36 圖4.5數位濾波器區塊圖 37 圖4.6 FIR濾波器架構圖 39 圖4.7 濾波器類型選擇 40 圖4.8輸入濾波器規格設定 40 圖4.9輸入濾波器階數 40 圖4.10頻率與增益關係圖 41 圖4.11頻率與相位關係圖 41 圖4.12 輸入200HZ信號濾波前後波形圖 42 圖4.13輸入8KHZ信號濾波前後波形圖 42 圖4.14數位濾波器程式流程圖 44 圖4.15 AD取樣資料記憶體排列方式 45 圖4.16 PID控制系統原理方塊圖 45 圖4.17增量型PID補償器計算流程圖 49 圖4.18切換式電源PWM內部方塊圖 50 圖4.19電壓隨耦控制法之系統程式流程圖 51 圖5.1(a) 輸入電壓110V、輸出功率14W之量測結果 53 圖5.1(b) 輸入電壓110V、輸出功率14W之量測結果 53 圖5.2(a) 輸入電壓110V、輸出功率35W之量測結果 54 圖5.2(b) 輸入電壓110V、輸出功率35W之量測結果 54 圖5.3(a) 輸入電壓110V、輸出功率70W之量測結果 55 圖5.3(b) 輸入電壓110V、輸出功率70W之量測結果 55 圖5.4(a) 輸入電壓220V、輸出功率14W之量測結果 56 圖5.4(b) 輸入電壓220V、輸出功率14W之量測結果 56 圖5.5(a) 輸入電壓220V、輸出功率35W之量測結果 57 圖5.5(b) 輸入電壓220V、輸出功率35W之量測結果 57 圖5.6(a) 輸入電壓220V、輸出功率70W之量測結果 58 圖5.6(b) 輸入電壓220V、輸出功率70W之量測結果 58 圖5.7 PFC功率因數實測曲線圖 60 圖5.8 PFC轉換效率曲線圖 60 圖5.9數位控制功率因數修正器硬體電路實體圖 61 表目錄 表3-1 功率因數修正器規格 24 表4-1 無限及有限脈衝響應之優缺點比較表 38 表4-2 16階有限脈衝響應濾波器規格參數表 39 表4-3 16階有限脈衝響應低通濾波器係數(Q15格式) 39 表5-2 不同輸入電壓及負載範圍下之PFC量測數據表 59

[1] Supratim Basu, M.H.J.Bollen, Tore M.Undeland, PFC Strategies in light of EN 61000-3-2, APEC paper A123656.
[2] “Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤16A per phase)”, IEC 1000-3-2 Document, 3rd Edition, 2005.
[3] 王智弘,「瞄準節能新趨勢,電源晶片商攻勢連連」,新電子雜誌第 269期, 2008年8月號。
[4] P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 190-195, 1993.
[5] R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
[6] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
[7] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
[8] L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
[9] C. S. Lin, T. M. Chen, and C. L. Chen, “Research on a Novel Three-Phase Single-Stage Boost DCM PFC Topology and the Dead Zone of its Input Current,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
[10] B. P. Divakar, and D. Suanto, “A new boost power factor pre-regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
[11] L.H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
[12] R. Real, B. Molnar, and N. O. Sokai, “Class E resonant regulate dc/dc power converter: analysis of operation and experiment results at 1.5 MHz,” IEEE Trans. Power Electronics, vol. 1, no. 2, pp. 111-120, Apr., 1986.
[13] K. H. Liu, R. Oruganti, and F. C. Lee, “Quasi-resonant converters topologies and characteristics,” IEEE Trans. Power Electronics, vol. 2, no. 1, pp. 62-71, Jan. 1987.
[14] 葉孝益 ,「切換式電源供應系統功因控制分析與研究」,國立清華大學碩士論文,2003。
[15] G.Garcia, J. A. Cobos, R. Prieti, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 749-755, May 2003.
[16] E. Ismail and R. W. Erickson “A single transistor three phase resonant switch for high quality rectification,” in Proc. IEEE Power Electronics Specialists Conference, PESC’92, pp. 1341-1351, July 1992.
[17] Comparative Evaluation of Secondary-Side ZVS-PWM Controlled GaN-HFET Resonant Converters for Inductive Power Transfer. IEEE Power Electronics Specialists Conference,NOV 2017.
[18] A ZCS PWM Switch Circuit for the Interleaved Boost Converters Aerospace and Electronic Systems, IEEE Transactions on, vol. 40, pp. 879-888, 2004.
[19] Robust Model Predictive Control for Compound Active Clamp Three-Phase Soft Switching PFC Converter Under Unbalanced Grid Condition,IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,June 1992.
[20] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE Power Electronics Specialists Conference, PESC’90, pp. 800-807, June 1990.
[21] R. Redl and B. P. Erisman, “Reducing distortion in peak current controlled boost power-factor correctors,” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC ’94, pp. 576-583, Feb. 1994.
[22] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Trans. Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.
[23] L. Dixon, “Average current mode control of switching power supplies,” in the Unitrode Applications Handbook(IC 1051), Application note U-140, pp. 3-356-3-369, 1997.
[24] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd edition, SCI-TECH Publishing Co., USA, 2001.
[25] Chen Zhou, “Active Boost Power Factor Analysis and Design,” IBM Corporation, April 20, 1989.
[26] M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for Switching Power Supplies,” IEEE Transactions on Power Electronics, Vol 1. PE-2, No. 4. October 1987.
[27] C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” APEC '96., Vol. 2, pp. 807-813, March 1996.
[28] S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
[29] Microchip Tech, “dsPIC33F Family Reference Manual,” Data Sheet, Preliminary, 2006.
[30] ROHM Technologies, “SCT2080KE Power Transistor,” Data Sheet, 2015.
[31] SHINDENGEN , “F10L60U Super Fast Recovery Rectifiers,”Data Sheet
[32] Microchip Tech, “dsPIC33F1010/202x,” Data Sheet, Preliminary, 2006.
[33] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007年。
[34] Momentum Data System, Inc.,” Digital Filter Design and Analysis System for use with Microchip Technology dsPIC Microcontrollers,” Application note, 2002.
[35] Microchip Tech, “dsPIC33F Family Reference Manual,” Data Sheet, Preliminary, 2006.
[36] 劉金琨,「先進PID控制MATLAB仿真」第二版,電子工業出版社,2007年。
[37] 曾軍皓,「高效能功率因數修正器研製」,國立台灣科技大學電子工程系碩士論文,民國95年
[38] A. T. Sankara Subramanian, and P. Sabarish, “A power factor correction based canonical switching cell converter for VSI fed BLDC motor by using voltage follower technique” , 14 December 2017.

無法下載圖示 全文公開日期 2023/01/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE