簡易檢索 / 詳目顯示

研究生: 阮氏芳
Nguyen Thi Phuong
論文名稱: 多階狀態航空運輸網路滿足旅遊需求之可靠度評估
Reliability Evaluation of a Multistate Air Transportation Network Meeting Travel Demand
指導教授: 林義貴
Yi-Kuei Lin
口試委員: 林義貴
Yi-Kuei Lin
曹譽鐘
Yu-Chung Tsao
歐陽超
Chao Ou-Yang
蘇國瑋
Kuo-Wei Su
蔡宗儒
Tzong-Ru Tsai
丁慶榮
Ching-Jung Ting
陳銘芷
Ming-Chih Chen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 76
中文關鍵詞: 多階航空運輸網路可靠度評估單一旅遊需求多重旅遊需求中途停留站數與時間限制預算限制
外文關鍵詞: multistate air transportation network, reliability evaluation, single travel demand, multiple travel demand, the number of stopovers and time constraints, budget constraint
相關次數: 點閱:441下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 航空運輸在全球經濟上扮演一個重要的角色;曾有多位學者研究最佳化航空運輸系統甚至提出演算法以評估系統之績效,而網路可靠度為一個評估許多現實生活系統績效的重要指標。本論文從旅行社的觀點評估航空運輸系統之可靠性,將航空運輸系統建構為多階航空運輸網路,其機場視為網路中之節點,兩機場間乘載旅客的航班則表示為網路中之傳輸邊;由此而知,本研究重點為探討滿足旅客需求之可靠度,因此將多階航空運輸網路可靠度定義為在給定的限制下能夠成功乘載一個特定旅客需求量的機率。本論文首先考量多階狀態網路需於時間與中途停留站數限制內滿足單一旅遊需求,隨後由兩個不同的面向擴展:(1)多重旅遊需求以及(2)加入預算限制,據此依序建構網路基礎模型及兩擴展之模型,並利用最小路徑的概念以評估可靠度,將其搜索過程加入此提出的演算法中。最後本文利用實際的案例來演示所提出演算法之程序及討論可靠度評估的含義,並根據此航空運輸網路的研究成果提供相當的訊息給旅行社管理者做為商業策略的決策依據。


    Air transportation plays an important role in global economy. Several scholars have studied optimizing air transportation system or proposed system performance evaluation algorithms. Network reliability is a crucial indicator to evaluate the system performance of many real-life systems. Not only airlines but also travel agents do their business under air transportation system. This work, therefore, evaluates the reliability of an air transportation system from the perspective of a travel agent. An air transportation system can be modeled as a multistate air transportation network wherein each node represents an airport and each arc denotes a flight carrying passengers between a pair of airports. Significantly, this study focuses on investigating the reliability of meeting travel demand. Therefore, the reliability of a multistate air transportation network is defined as the probability that a requested number of passengers can be carried successfully under given constraints. This dissertation first considers a multistate air transportation network meeting single travel demand under limited time and the number of stopovers then expands in two different directions: (i) multiplying travel demand and (ii) adding the budget constraint. Therefore, the basic model and two extended models are constructed in turn. This study employs the concept of minimal paths in reliability evaluation. Subsequently, searching procedures are added to the proposed algorithms. In addition, illustrative examples and case studies are utilized to demonstrate the proposed algorithm and discuss the implications of reliability evaluation. The findings from this study are convinced to contribute equivalent information to travel agency executives for their strategic decision-making regarding air transportation network.

    摘要 ......................................................................................................................................... I ABSTRACTS ........................................................................................................................ II ACKNOWLEDGEMENT .................................................................................................... III CONTENT ........................................................................................................................... IV LIST OF FIGURES .............................................................................................................. VI LIST OF TABLES ............................................................................................................. VII CHAPTER 1 INTRODUCTION .......................................................................................... 1 1.1 Air transportation systems .......................................................................................... 1 1.2 Problem description .................................................................................................... 2 1.3 Organization of dissertation........................................................................................ 3 CHAPTER 2 LITERATURE REVIEW ............................................................................... 5 2.1 Performance evaluation of an air transportation system ............................................ 5 2.2 Multistate air transportation network and Reliability evaluation ............................... 9 CHAPTER 3 SINGLE TRAVEL DEMAND UNDER TIME AND THE NUMBER OF STOPOVERS CONSTRAINTS ........................................................................................... 12 3.1 MANOT-S formulation ............................................................................................ 12 3.2 (o,T)–MPs generation and flow vectors ................................................................... 16 3.3 MANOT-S reliability and minimal capacity vectors ............................................... 19 3.4 Algorithm to evaluate the reliability ......................................................................... 22 3.5 Numerical experiment of MANOT-S ....................................................................... 23 3.5.1 A case study .......................................................................................................... 23 3.5.2 Model construction and reliability evaluation ...................................................... 25 3.5.3 Result analysis ...................................................................................................... 29 CHAPTER 4 MULTIPLE TRAVEL DEMAND UNDER TIME AND THE NUMBER OF STOPOVERS CONSTRAINTS ..................................................................................... 31 v 4.1 MANOT-M formulation ........................................................................................... 31 4.2 (o,T)–MPs generation and flow vectors ................................................................... 32 4.3 MANOT-M reliability and minimal capacity vectors .............................................. 34 4.4 Algorithm to evaluate the reliability of MANOT-M ................................................ 35 4.5 An illustrate example of MANOT-M from two origins to one destination.............. 36 4.5.1 Model construction and reliability evaluation ...................................................... 37 4.5.2 Result analysis ...................................................................................................... 40 4.6 A practical case of MANOT-M from two origins to two destinations ..................... 41 4.6.1 A practical case ..................................................................................................... 41 4.6.2 The reliability and computational time ................................................................. 43 CHAPTER 5 SINGLE TRAVEL DEMAND UNDER TIME, THE NUMBER OF STOPOVERS, AND BUDGET CONSTRAINTS ............................................................... 46 5.1 MANOTB-S formulation ......................................................................................... 46 5.2 (o,T,B)–MPs generation ............................................................................................ 47 5.3 Flow vectors and minimal capacity vectors ............................................................. 48 5.4 MANOTB-S reliability and minimal capacity vectors ............................................. 49 5.5 Algorithm to evaluate the reliability of MANOTB-S .............................................. 50 5.6 Numerical experiment of MANOTB-S .................................................................... 51 5.6.1 Model construction and reliability evaluation ...................................................... 51 5.6.2 Result analysis ...................................................................................................... 54 CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH .......................................... 57 6.1 Conclusions .............................................................................................................. 57 6.2 Future research ......................................................................................................... 59 REFERENCES ..................................................................................................................... 61 AUTHOR BIOGRAPHY ..................................................................................................... 66

    Alexopoulos, C., 1995. A note on state-space decomposition methods for analyzing stochastic flow networks. IEEE Transactions on Reliability 44, 354-357.
    Arjomandi, A., Seufert, J.H., 2014. An evaluation of the world's major airlines' technical and environmental performance. Economic Modelling 41, 133-144.
    Bai, G., Zuo, M.J., Tian, Z., 2015. Ordering Heuristics for Reliability Evaluation of Multistate Networks. IEEE Transactions on Reliability 64, 1015-1023.
    Barbot, C., Costa, Á., Sochirca, E., 2008. Airlines performance in the new market context: A comparative productivity and efficiency analysis. Journal of Air Transport Management 14, 270-274.
    Barros, C.P., Peypoch, N., 2009. An evaluation of European airlines’ operational performance. International Journal of Production Economics 122, 525-533.
    Bezerra, G.C.L., Gomes, C.F., 2018. Performance measurement practices in airports: Multidimensionality and utilization patterns. Journal of Air Transport Management 70, 113-125.
    Bing, D., 2014. Reliability Analysis for Aviation Airline Network Based on Complex Network. Journal of Aerospace Technology and Management 6, 193-201.
    Bowen, J., 2000. Airline hubs in Southeast Asia: national economic development and nodal accessibility. Journal of Transport Geography 8, 25-41.
    Burghouwt, G., Redondi, R., 2013. Connectivity in Air Transport Networks: An Assessment of Models and Applications. Journal of Transport Economics and Policy 47, 35-53.
    Chang, P.-C., Lin, Y.-K., Chen, J.C., 2017. System reliability for a multi-state manufacturing network with joint buffer stations. Journal of Manufacturing Systems 42, 170-178.
    Chang, Y.-H., Shao, P.-C., Chen, H.J., 2015. Performance evaluation of airport safety management systems in Taiwan. Safety Science 75, 72-86.
    Chang, Y.-H., Yeh, C.-H., 2004. A new airline safety index. Transportation Research Part B: Methodological 38, 369-383.
    62
    Chang, Y.-H., Yeh, C.-H., Wu, P.-S., 2018. Evaluating airline crisis management performance: The cases of flights GE222 and GE235 crash accidents. Journal of Air Transport Management 70, 62-72.
    Charnes, A., Gallegos, A., Li, H., 1996. Robustly efficient parametric frontiers via Multiplicative DEA for domestic and international operations of the Latin American airline industry. European Journal of Operational Research 88, 525-536.
    Chiou, Y.-C., Chen, Y.-H., 2006. Route-based performance evaluation of Taiwanese domestic airlines using data envelopment analysis. Transportation Research Part E: Logistics and Transportation Review 42, 116-127.
    Chou, H.W., Lee, C.Y., Chen, H.K., Tsai, M.Y., 2016. Evaluating airlines with slack-based measures and meta-frontiers. Journal of Advanced Transportation 50, 1061-1089.
    Di Gravio, G., Patriarca, R., Mancini, M., Costantino, F., 2016. Overall safety performance of the Air Traffic Management system: The Italian ANSP's experience on APF. Research in Transportation Business & Management 20, 3-12.
    Eshtaiwi, M., Badi, I., Abdulshahed, A., Erkan, T.E., 2018. Determination of key performance indicators for measuring airport success: A case study in Libya. Journal of Air Transport Management 68, 28-34.
    Garg, C.P., 2016. A robust hybrid decision model for evaluation and selection of the strategic alliance partner in the airline industry. Journal of Air Transport Management 52, 55-66.
    Gayle, P.G., Yimga, J.O., 2018. How much do consumers really value air travel on-time performance, and to what extent are airlines motivated to improve their on-time performance? Economics of Transportation 14, 31-41.
    Gillen, D., Morrison, W.G., 2015. Aviation security: Costing, pricing, finance and performance. Journal of Air Transport Management 48, 1-12.
    Gudiel Pineda, P.J., Liou, J.J.H., Hsu, C.-C., Chuang, Y.-C., 2018. An integrated MCDM model for improving airline operational and financial performance. Journal of Air Transport Management 68, 103-117.
    Gupta, H., 2018. Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management 68, 35-47.
    63
    Huisheng, G., Jingyu, Z., 2012. An improved algorithm of network reliability based on pathset and boolean operation, Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012), pp. 189-193.
    IATA, 2016. Annual Review 2016, 72nd Annual General Meting.
    ICAO, 2017. Traffic growth and airline profitability were highlights of air transport in 2016
    Lin, Y.-K., 2003. Using minimal cuts to study the system capacity for a stochastic-flow network in two-commodity case.
    Lin, Y.-K., 2010. Calculation of minimal capacity vectors through k minimal paths under budget and time constraints. European Journal of Operational Research 200, 160-169.
    Lin, Y.-K., 2011. Network Reliability of a Time-Based Multistate Network Under Spare Routing With p Minimal Paths. IEEE Transactions on Reliability 60, 61-69.
    Lin, Y.-K., Chang, P.-C., 2011. Estimated and exact system reliabilities of a maintainable computer network. Journal of Systems Science and Systems Engineering 20, 229-248.
    Lin, Y.-K., Chang, P.-C., 2012. Reliability evaluation for a manufacturing network with multiple production lines. Computers & Industrial Engineering 63, 1209-1219.
    Lin, Y.-K., Huang, C.-F., 2014. System reliability of assured accuracy rate for multi-state computer networks from service level agreements viewpoint. Journal of Systems Science and Systems Engineering 23, 196-211.
    Lin, Y.-K., Yeh, C.-T., 2011. Using minimal cuts to optimize network reliability for a stochastic computer network subject to assignment budget. Computers & Operations Research 38, 1175-1187.
    Liou, J.J.H., Tzeng, G.-H., Chang, H.-C., 2007. Airline safety measurement using a hybrid model. Journal of Air Transport Management 13, 243-249.
    Min, H., Joo, S.-J., 2016. A comparative performance analysis of airline strategic alliances using data envelopment analysis. Journal of Air Transport Management 52, 99-110.
    Muniswamy, V.V., 2009. Design and Analysis of Algorithms. I.K. International Publishing House Pvt. Ltd.
    Niu, Y.-F., Xu, X.-Z., 2012. Reliability evaluation of multi-state systems under cost consideration. Applied Mathematical Modelling 36, 4261-4270.
    Niu, Y., Gao, Z., Sun, H., 2017. An improved algorithm for solving all d-MPs in multi-state networks. Journal of Systems Science and Systems Engineering.
    64
    Song, M.G., Yeo, G.T., 2017. Analysis of the Air Transport Network Characteristics of Major Airports. The Asian Journal of Shipping and Logistics 33, 117-125.
    Strategy&, 2015. 2015 Aviation Trends, in: Strategy& (Ed.), www.strategyand.pwc.com.
    Suárez-Alemán, A., Jiménez, J.L., 2016. Quality assessment of airport performance from the passengers' perspective. Research in Transportation Business & Management 20, 13-19.
    Tavassoli, M., Faramarzi, G.R., Farzipoor Saen, R., 2014. Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input. Journal of Air Transport Management 34, 146-153.
    TECO, 2016. Taiwan relaxes visa rules for nationals of six ASEAN members and India.
    USBTS, 2017. Understanding the Reporting of Causes of Flight Delays and Cancellations.
    Wandelt, S., Sun, X., 2015. Evolution of the international air transportation country network from 2002 to 2013. Transportation Research Part E: Logistics and Transportation Review 82, 55-78.
    Wu, C.-L., 2006. Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms. Networks and Spatial Economics 6, 235-251.
    Wu, C.-L., Caves, R.E., 2002. Towards the optimisation of the schedule reliability of aircraft rotations. Journal of Air Transport Management 8, 419-426.
    Wu, P., Chu, F., Che, A., Fang, Y., 2017. An efficient two-phase exact algorithm for the automated truck freight transportation problem. Computers & Industrial Engineering 110, 59-66.
    Yeh, W.-C., 2002. Search for minimal paths in modified networks. Reliability Engineering & System Safety 75, 389-395.
    Yeh, W.-C., 2004. Multistate network reliability evaluation under the maintenance cost constraint. International Journal of Production Economics 88, 73-83.
    Yeh, W.-C., 2005. A new approach to evaluate reliability of multistate networks under the cost constraint. Omega 33, 203-209.
    Yeh, W.C., 2011. An Improved Method for Multistate Flow Network Reliability With Unreliable Nodes and a Budget Constraint Based on Path Set. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41, 350-355.
    Yeh, W.C., 2015. An Improved Sum-of-Disjoint-Products Technique for Symbolic Multi-State Flow Network Reliability. IEEE Transactions on Reliability 64, 1185-1193.
    65
    Yimga, J.O., 2017. Airline code-sharing and its effects on on-time performance. Journal of Air Transport Management 58, 76-90.
    Zuo, M.J., Tian, Z., Huang, H.-Z., 2007. An efficient method for reliability evaluation of multistate networks given all minimal path vectors. IIE Transactions 39, 811-817.

    QR CODE