簡易檢索 / 詳目顯示

研究生: 林佳儒
Chia-Ju Lin
論文名稱: 超螢光光源的光退火效應研究及其於Sagnac干涉儀之應用
Study on Photo-annealing Effect of Super-fluorescent Fiber Source and Its Application in Sagnac Interferometer
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 單秋成
Chow-Shing Shin
彭子軒
Tz-Shiuan Peng
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 超螢光光源光退火效應Sagnac干涉儀光纖陀螺儀
外文關鍵詞: Super-fluorescent fiber source (SFS), Photo-annealing effect, Sagnac interferometer, Fiber optic gyroscope (FOG)
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討摻鉺超螢光光源的特性、光退火效應、穩定性以及Sagnac干涉儀的應用。利用經碳纖維複合材料溫度補償後的寬頻譜光纖光柵,形成複行後向的光源架構進行光源特性量測。比較使用HG980B1與AG980H兩種摻鉺光纖的光源特性,以不同長度加入光源架構中進行量測,並以輸出功率、平均波長及3 dB頻寬進行探討。5 m HG980B1的輸出表現較佳,輸出功率達10.65 dBm、平均波長1549.3 nm、3 dB頻寬為16.92 nm。光退火效應部分,將HG980B1和AG980H進行總輻射劑量200 krad的60Co輻射照射,利用637 nm雷射對受輻摻鉺光纖進行輻射損耗修復,並藉由980 nm寬頻譜光源量測摻鉺光纖的吸收頻譜變化來探討修復輻射損耗的光退火效應。結果兩種摻鉺光纖的輻射損耗皆可被637 nm雷射修復,以AG980H的輻射損耗較高但修復的程度較多,在980 nm波段的損耗降低了12.71 dB。探討光源的溫度與即時輻射穩定性,使用複行後向光源架構,溫度穩定性量測光源在溫度範圍0 oC至70 oC內的輸出特性,以5 m HG980B1的結果較佳,其輸出功率變動小於0.12 dB,平均波長穩定性小於2 ppm/oC,3 dB頻寬變動小於2.2 %。即時輻射穩定性量測,將5 m的HG980B1照射總劑量200 krad的60Co輻射,並在光源架構中加入10 mW的637 nm雷射作為光退火光源進行即時輻射損耗修復。在4.55 小時、200 krad照射下,輸出功率變動小於1.31 dB,平均波長變化量為178.67 ppm,3 dB頻寬變動為0.7 %。Sagnac干涉儀的應用部分,使用2x2光纖耦合器並根據Sagnac效應設計水平感測架構,利用5 m HG980B1的複行後向光源作為感測光源,並以長度分別為3 m、4 m及5 m的Sagnac干涉儀進行水平感測,隨著角度旋轉偏移,Sagnac干涉儀的輸出功率呈現近似餘弦波的變化,以5 m Sagnac干涉儀的結果較為穩定,在順時針90o及逆時針90o的角度變化中,功率的線性變化約為0.05 mW/o。


    In this thesis, the characteristics of super-fluorescent fiber source (SFS), the recovery of photo-annealing effect and the application of fiber optic gyroscope (FOG) were discussed. The main scheme used here was a double-pass backward SFS (DPB-SFS) based on a broadband fiber Bragg grating (BFBG), which is temperature-compensated by carbon fiber reinforced plastic (CFRP). First, two types of Erbium-doped fiber (EDF), HG980 B1 and AG980H, in different lengths were used in the DPB-SFS. The properties of DPB-SFS using both types of EDFs were studied in their output power, mean-wavelength and 3 dB bandwidth. The best output power, mean-wavelength and 3 dB bandwidth were 10.65 dBm, 1549.3 nm and 16.92 nm, respectively, using 5 m EDF (HG980 B1). Then, we discussed the photo-annealing effect. The EDFs were exposed in 60Co gamma-radiation with a total dose of 200 krad. Because the molecular bonding of EDF would be damaged by the radiation, a 637 nm red light laser was used to recovery the radiation-induced loss. The properties of radiation-induced loss and recovery were characterized by measuring the absorption spectra of EDFs which were pumped by a 980 nm broadband light source. Results showed that both types of EDF could be photo-annealed by the 637 nm red light laser. The AG980H EDF suffered greater loss than the other, but the loss could be healed up to 12.71 dB after photo-annealed. After that, the thermal and real-time radiation stabilities of DPB-SFS were discussed. In this part, we discussed the thermal stability by using 5 m EDF (HG980B1) and the temperature ranging from 0 to 70 oC. The measured variation of output power, mean-wavelength and 3 dB bandwidth were 0.12 dB, 2 ppm/oC and 2.2 %, respectively. To verify real-time radiation stability, a 5 m HG980B1 EDF was set in the radiation chamber for 4.55-hour 60Co gamma-radiation exposure with a total dose of 200 krad. Again, a 637 nm red light laser was used to the DPB-SFS for in-time recovery of radiation-induced loss. The measured variation of output power, mean-wavelength and 3 dB bandwidth were 1.31 dB, 178.67 ppm and 0.7 %, respectively. Finally, for the investigation of Sagnac interferometer, the horizontal sensing based on Sagnac effect was introduced, and the DPB-SFS with 5 m HG980B1 EDF was used as sensing light source. Three interferometer schemes based on 2x2 fiber couplers in different lengths of EDF (3 m, 4 m and 5m) were investigated. The results showed that the variation of output power was periodic up and down in cosine function when the rotation angles varys from 0o to 90o both on clockwise and counter-clockwise direction. Taking 5 m interferometer for example; the slope on linear region is 0.05 mW power per rotation angle.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 超螢光光源之元組件與文獻探討 4 2.1超螢光光源之介紹 4 2.2超螢光光源之元組件介紹 5 2.2.1 泵激光源 5 2.2.2 摻鉺光纖 7 2.2.3 光纖光柵 9 2.3光退火原理與機制 13 2.3.1 輻射對光纖的影響 13 2.3.2 光退火機制 14 2.4抗輻射超螢光光源與光退火技術之文獻探討 14 第三章 超螢光光源之特性與光退火效應量測 19 3.1超螢光光源之架構 19 3.2 複行後向架構之泵激光源參數量測 22 3.3 複行後向架構之摻鉺光纖參數量測 26 3.3.1 輸出功率曲線量測 27 3.3.2 不同摻鉺光纖之複行後向光源特性 30 3.4 受輻摻鉺光纖之光退火效應探討 32 3.4.1 光退火光源之選擇 32 3.4.2 修復輻射損耗之光退火效應探討 34 3.5 本章小結 37 第四章 超螢光光源之穩定性量測 39 4.1光源之溫度穩定性量測 39 4.1.1 使用4 m HG980 B1摻鉺光纖的溫度穩定性量測 41 4.1.2 使用5 m HG980 B1摻鉺光纖的溫度穩定性量測 44 4.1.3 使用8 m AG980H摻鉺光纖的溫度穩定性量測 47 4.2光源之即時輻射穩定性量測 50 4.3 本章小節 57 第五章 Sagnac干涉儀建構與水平感測 59 5.1 Sagnac干涉儀基本架構 59 5.1.1 Sagnac效應 59 5.1.2 Sagnac干涉儀常見架構 62 5.2水平感測原理及架構 63 5.2.1水平感測原理 64 5.2.2 Sagnac干涉儀與水平感測架構 65 5.3 水平感測實驗 67 5.4 本章小結 74 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 77 參考文獻 81

    [1] 李春霖譯,“飛行概要圖解”,徐氏基金會,1993。
    [2] W. J. Hesse, N. V. S. Mumford Jr., “Jet propulsion for application,” 大學圖書出版社, 1982.
    [3] E. H. J. Pallett, and V. Brown, “Aircraft instruments principles and applications,” 滄海書局, 1972.
    [4] J. Roskan, “Airplane flight dynamics and automatic flight controls,” 滄海書局, 1979.
    [5] 張連璧譯,“光纖感測器”,文笙書局,1991。
    [6] 鄧正隆著,“慣性技術”,崧博出版,2012。
    [7] 黃彥瑋,“干涉型光纖陀螺儀的研製及其效能探討”,國立臺灣大學碩士論文,2009。
    [8] P. Z. Zatta, and D. C. Hall, “Ultra-high-stability two-stage superfluorescent fiber sources for fiber optic gyroscopes,” Electronics Letters, vol. 38, no.9, pp. 406-408, 2002.
    [9] H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation,” Electronics Letters, vol. 33, no. 24, pp. 2061-2063, 1997.
    [10] 國家太空中心. (2001). Networks [Online]. Available: http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-7/program-description.html.
    [11] T. P. Gaiffe, P. Simonpietri, J. Morisse, N. Cerre, E. M. Taufflieb, and H. C. Lefevre, “Wavelength stabilization of an Erbium-doped fiber source with a fiber Bragg grating for high-accuracy FOG,” SPIE Fiber Optic Gyros: 20th Anniversary Conference, pp. 375-380, 1996.
    [12] W. Huang, X. Wang, B. Zheng, H. Xu, C. Ye, and Z. Cai, “Stable and wideband L-band Erbium superfluorescent fiber source using improved bi-directional pumping configuration,” Optics Express, vol. 15, no. 15, pp. 9778-9783, 2007.
    [13] 謝馨瑩,“摻鉺光纖光源平均波長穩定性之研究”,中原大學碩士論文,2002。
    [14] K. A. Fesler, M. J. F. Digoneet, B. Y. Kim, and H. J. Shaw, “Stable fiber-source gyroscope,” Optics Letters, vol. 15, no. 22, pp. 1321-1323, 1990.
    [15] P. R. Morkel, E. M. Taylor, J. E. Townsend, and D. H. Payne, “Wavelength stability of Nd3+-doped fibre fluorescent sources,” Electronics Letters, vol. 26, no. 13, pp. 873-875, 1990.
    [16] R. P. Moeller, W. K. Burns, and N. J. Frigo, “Open-loop output and the scale factor stability in a fiber-optic gyroscope,” IEEE Journal of Lightwave Technology, vol. 7, no. 2, pp. 262-269, 1989.
    [17] J. L. Chang and M. Q. Tan, “Experimental optimization of an Erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, vol. 32, no. 10, 2011.
    [18] P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor application,” IEEE Journal of Lightwave Technology, vol. 12, no. 3, pp. 550-567, 1994.
    [19] M. J. F. Digoneet, “Rare-earth-doped fiber lasers and amplifiers,” Marcel Dekker, New York, USA, 2001.
    [20] 王祥,“線性型單縱模光纖雷射的研製”,國立臺灣科技大學碩士論文,2010。
    [21] 洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”,國立臺灣科技大學碩士論文,2006。
    [22] T. S. Peng, Y. W. Huang, L. A. Wang, R. Y. Liu, and F. I. Chou, “Photo-annealing effects on gamma radiation induced attenuation in Erbium doped fibers and the sources using 532-nm and 976-nm lasers,” IEEE Transactions on Nuclear Science, vol. 57, no. 4, pp. 2327-2331, 2010.
    [23] T. S. Peng, L. A. Wang, and R. Y. Liu, “A radiation-tolerant superfluorescent fiber source in double-pass backward configuration by using reflectivity-tuning method,” IEEE Photonics Technology Letters, vol. 23, no. 20, pp. 1460-1462, 2011.
    [24] Y. L. Han, W. Xiao, X. S. Yi, and Y. C. Zhang, “Research on the active recovery technology of optical fiber radiation effect,” 27th International Congress on High-Speed Photography and Photonics, vol. 6279, 2007.
    [25] T. S. Peng, R. Y. Liu, and L. A. Wang, “Shorter wavelength photo-annealing apparatus for rare-earth-doped fiber and its optical assemblies under irradiation,” US Patent No. 8,578,739 B2, issue date: 12th November, 2013.
    [26] T. S. Peng, and L. A. Wang, “Radiation-tolerant superfluorescent fiber sources for high-performance fiber-optic gyroscopes working under gamma irradiation higher than 200 krad,” IEEE Photonics Technology Letters, vol. 24, no. 15, pp. 1340-1342, 2012.
    [27] S. H. Chang, R. Y. Liu, C. E. Lin, F. I. Chou, C. Y. Tai, and C. C. Chen, “Photo-annealing effect of gamma-irradiated Erbium-doped fibre by femtosecond pulsed laser,” Journal of Physics D: Applied Physics. 46, 2013.
    [28] Y. H. Yang, X. X. Su, and W. Yang, “Radiation-induced attenuation self-compensating effect in super-fluorescent fiber source,” Chinese Physics B, vol. 23, no. 9, 2014.
    [29] P. F. Wysocki, M. J. F. Digoneet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Optics Letters, vol. 16, no. 12, pp. 961-963, 1991.
    [30] D. C. Hall and W. K. Burns, “Wavelength stability optimization in Er3+-doped superfluorescent fibre sources,” Electronics Letters, vol. 30, no. 8, pp. 653-654, 1994.
    [31] D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fibre sources,” IEEE Journal of Lightwave Technology, vol. 13, no. 7, pp. 1452-1460, 1995.
    [32] M. K. Jazi, S. Shahi, M. J. Hekmat, H. Saghafifar. A. T. Khuzani, H. Khalilian, and M. D. Baghi, “The evaluation of various designs for a C and L band superfluorescent source based Erbium doped fiber,” Laser Physics, vol. 23, no. 6, 2013.
    [33] Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a Faraday rotator mirror,” IEEE Photonics Technology Letters, vol. 25, no. 8, pp. 731-733, 2013.
    [34] W. Wang, X. F. Wang, and J. L. Xia, “The influence of Er-doped fiber source under irradiation on fiber optic gyro,” Optical Fiber Technology, vol. 18, no. 1, pp. 39-43, 2012.
    [35] L. Keigo, “Elements of photonics volume II,” Wiley, USA, 2002.
    [36] R. Kashyap, “Fiber Bragg gratings,” Academic Press, San Diego, USA, 1999.
    [37] 吳宗遠,“以複合材料補償光纖光柵因溫度造成的波長漂移之改良式機制”,國立臺灣大學碩士論文,2003。
    [38] 呂宗祐,“抗輻射之低溫度係數平坦光源研製與即時監控”,國立臺灣科技大學碩士論文,2013。
    [39] M. N. Armenise, C. Ciminelli, F. Dell’Oilo, and V. M. M. Passaro, “Advances in gyroscope technologies,” Springer, Berlin, Germany, 2010.
    [40] S. Merlo, M. Norgia, and S. Donati, “Fiber gyroscope principles,” Handbook of Fiber Optic Sensing Technology, 2000.
    [41] 安毓英,曾小東著,“光學感測與測量”,五南圖書出版公司,2004。
    [42] M. A. Terrel, M. J. F. Digonnet, and S. H. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” IEEE Journal of Lightwave Technology, vol. 30, no. 7, pp. 931-937, 2012.
    [43] F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics Letters, vol. 16, no. 4, pp. 229-231, 1991.
    [44] 廖顯奎譯,“光纖通訊”,高立出版社,2005。
    [45] A. Morana, S. Giard, E. Marin, C. Marcandella, P. Paillet, J. Perisse, J. R. Mace, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Optics Letters, vol. 39, no. 18, pp. 5313-5316, 2014.
    [46] T. A. Birks, “Effect of twist in 3x3 fused tapered couplers,” Applied Optics, vol. 31, no. 16, pp. 1087-1089, 1992.

    QR CODE