簡易檢索 / 詳目顯示

研究生: 陳誠章
Cheng-Chang Chen
論文名稱: 針對手機天線SAR值的近場控制研究
SAR investigation of Near-Field Control for Mobile Phone Antennas
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 馮武雄
Wu-Shiung Feng
黃進芳
Jhin-Fang Huang
陳國龍
Kuo-Long Chen
張勝良
Sheng-Lyang Jang
陳一鋒
I-Fong Chen
林丁丙
Ding-Bing Lin
溫俊瑜
Jiun-Yu Wen
王蒼容
Chun-Long Wang
徐敬文
Ching-Wen Hsue
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 75
中文關鍵詞: 手機天線近場控制
外文關鍵詞: SAR, Mobile Phone, Antenna
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中,提出利用控制天現場型使得所設計之天線可容易符合SAR之要求,另外天線設計中也導入利用迴圈結構產生反向電流使能量較為分散,比較不容易形成集中型熱點,對降低SAR值亦很有幫助,並應用Adjacent Frequency 設計,採用多路徑產生多諧振,達到寬頻的效果。在本文所提第一種天線係採五分之一波長輻射體與從接地平面突出的印刷接地線結合之寄生金屬負載,其特性可以用於控制移動電話天線的近場。 文中研究了人類的手和頭部對本論文所提出的天線的阻抗帶寬和輻射特性的影響。 應用在CDMA,GSM和WCDMA頻帶中的24dBm的輸入功率和在DCS和PCS頻帶中的21dBm的輸入功率都滿足1.6mW / g的比吸收率(SAR)極限和M3和M4的助聽器兼容性(HAC) 水平。在本文所提第二種天線係可用於移動手機應用的新型多頻帶寬帶天線。具有短路線的不對稱T型單極天線被設計為在LTE(LTE,698MHz-960MHz,1710MHz-2170MHz,2500MHz-2690MHz)和無線網路(WLAN,IEEE 802.11ac,5150MHz- 5850MHz)頻帶。實驗結果證明,在800MHz,1900MHz,2600MHz和5500MHz下實現3:1的VSWR的帶寬分別為37.75%,24.63%,11.46%和21.76%。 LTE頻帶的輸入功率為24dBm,IEEE 802.11ac頻帶的輸入功率為13dBm時的比吸收率(SAR)滿足SAR限值1.6 mW / g。 實驗結果驗證了理論分析的預測。


In this thesis, it is proposed to use the control field to make the design of the antenna can easily meet the requirements of SAR, the other antenna design also introduced the use of loop structure to produce reverse current to make the energy is more dispersed, less likely to form a centralized hot spots, It is also helpful to reduce the SAR value, and the application of Adjacent Frequency design, multi-path to produce multi-resonant, to achieve the effect of broadband. The first propose antenna, it is shown that the one fifth wavelength radiator combines with a printed ground-line which protrudes from ground-plane jointly with parasitic metal-loading, which can be used to control the near-fields of a mobile phone antenna. The human’s hand and head effect on impedance bandwidth and radiation characteristics of the proposed antenna is studied. The input power of 24dBm in CDMA, GSM and WCDMA bands, and the input power of 21dBm in DCS and PCS bands all meet the specific absorption rate (SAR) limit of 1.6 mW/g and hearing aid compatibility (HAC) of M3 and M4 level. The second propose antenna, it is a novel multi-band broadband antenna for mobile handsets application. It is proposed and analyzed in this paper. An asymmetric T-type monopole antenna with a shorting-line is designed to be operated in long term evolution (LTE, 698MHz-960MHz, 1710MHz-2170MHz, 2500MHz-2690MHz) and wireless local area network (WLAN, IEEE 802.11ac, 5150MHz-5850MHz) bands. The experimental results indicate that the bandwidths for VSWR of 3:1 achieved were 37.75%, 24.63%, 11.46% and 21.76% at 800MHz, 1900MHz, 2600MHz and 5500MHz, respectively. The specific absorption rate (SAR) for an input power of 24dBm in LTE band, and an input power of 13dBm in IEEE 802.11ac band meet the SAR limit of 1.6 mW/g. Experimental results verify the prediction of the theoretical analysis.

Contents Abstract ii 致 謝 iii Contents iv List of Tables vi List of Figures vii 1.1 Historical Background 1 1.2 Solution Techniques 3 1.3 Outline of Subsequent Chapters 6 Chapter 2 Fundamental Theory and Measured Consideration 7 2.1 Radiation field analysis 7 2.1.1 Electric dipole radiation 8 2.1.2 Magnetic dipole radiation field 10 2.2 Antenna principles 11 2.2.1 Dipole Antenna 11 2.2.2 Image Theory 14 2.2.3 Monopole antenna 16 2.2.3 Printed planar inverted-F antenna 17 2.3 Balanced and Unbalanced Antennas 19 2.4 Unbalanced to Balance circuit 21 2.4.1 Balun 21 2.4.2 Suppress the effect of unbalanced current 23 2.4.3 single-frequency balun design 27 2.5 Specific Absorption Rate (SAR) 29 2.6 Hearing Aid compatibly 33 2.7 Far field measurement (3m Anechoic chamber) 36 Chapter 3 Near-Field Control of Parasitic Loading Antenna 38 3.1 Antenna Structure and Design 38 3.2 Experimental Results and Discussion 40 3.3 Summary 43 Chapter 4 A Novel multi-band broadband Antenna for Mobile Handsets 44 4.1 Antenna structure and design 44 4.2 Experimental results and discussion 46 4.2.1 Analysis of the proposed antenna structure 50 4.2.2 Analysis of SAR 55 4.3 Summary 58 Chapter 5 Conclusions 59

[1]. I-Fong Chen and Chia-Mei Peng, “Compact Wide-Band Antenna for Dual ISM-Band Applications”, IEICE Trans. On Communications, Vol.E87-B, No.3, pp. 783-785, March, 2004. (SCI)
[2]. I-Fong Chen and Chia-Mei Peng, “Microstrip-fed dual-U shaped printed monopole antenna for dual-band wireless communication applications”, Electronics Letters, Vol 39, No.13, pp. 955-956, June, 2003. (SCI)
[3]. Ching-Wen Hsue, Min-Ching Kuan and Chia-Mei Peng, “A Microwave Differentiator”, Microwave and Optical Technology Letters, Vol. 37, No. 3, pp. 226-228, April, 2003. (SCI)
[4]. Chia-Mei Peng, The investigation of multi-band small antennas, Ph.D. National Taiwan University of science and Technology, Taipei, 2005。
[5]. John D. Kraus and Ronald J. Marhefka, ‘Antennas’, McGraw-Hill, New York, 2002 。
[6]. Chia-Mei Peng, I-Fong Chen and Ching-Wen Hsue, “Modified printed folded λ/2 dipole antenna for DVB applications”, IEICE Trans. On Communications, Accepted. (SCI)
[7]. Chia-Mei Peng, I-Fong Chen, J.-J. Yeh and C.-W. Hsue, “Printed modified loop antenna for WLAN/WiMAX applications”, IEE Electronics Letters, Vol. 43, No. 5, pp. 262-263, March. 2007. (SCI)
[8]. I-Fong Chen, Chia-Mei Peng and Sheng-Chieh Liang, “Single layer printed monopole antenna for dual ISM-band operation”, IEEE Trans. Antennas Propagat., Vol. 53, No. 4, pp. 1270-1273, April. 2005. (SCI)
[9]. Neff, H. P., and D. A. Reed, “The effects of secondary Scattering on the Induced Current in an Infinite Wire over an Imperfect Ground from an Incident Electromagnetic Pulse,” IEEE Trans. Antennas Propag., Vol. AP-37, Dec, 1989.
[10]. R.F. German, H.W. Ott and C.R. Paul. “Effect of an Image Plane on Printed Circuit Board Radiation,” IEEE International Symposium on Electromagnetic Compat. Washington, pp.284-291, Aug. 1990.
[11]. David M. Hockason, James L.Drewniak, Todd H. Hubing, Thomas P. Van Doren, Fei Sha and Micheael J. Wilhelm. ”Investigation of Fundamental EMI Source Mechanisms Driving Common-Mode Radiation from Printed Circuit Boards with Attached Cables,” IEEE Trans. Electromagn. Compat., vol. 38, pp.557-565, Nov. 1996.
[12]. R.W. Dockey and R.F. German. “New techniques for Reducing Printed Circuit Boards Common-Mode Radiation,” IEEE Procs. Electromagn Compact. Soc., Dallas, Tx, pp.334-339, Aug. 1993.
[13]. Paul, C. R., “Transmission Line Modeling of Shielded Wires for Crosstalk Prediction,” IEEE Trans. Electromagn. Compat., Vol. EMC-23, pp. 345-351, Nov. 1981.
[14]. C. Picher, J. Anguera, A. Andujar, C. Puente and S. Kahng: ’Analysis of the Human Head Interaction in Handset Antennas with Slotted Ground Planes’, IEEE Trans. On Antennas and Propagat., vol. 54, no. 2, pp. 36-52, April, 2012.
[15]. K.-L. Wong, M.-F. Tu, C.-Y. Wu and W.-Y. Li:’ On-board 7-band WWAN/LTE antenna with small size and compact integration with nearby ground plane in the mobile phone’, Microwave and Optical Tech. Letters, vol. 52, no. 12, pp.2847-2853, Sep., 2010.
[16]. Zhengwei Du, Ke Gong and Jeffrey Shiang Fu, “A novel compact wide-band planar antenna for mobile handsets,” IEEE Antennas Propag., vol. 54, no. 2, pp. 613-619, Feb., 2006.
[17]. Schmid and Parter Engineering, AG (SPEAG), [Online], Available: http://www.speag.com/speag/products.php
[18]. American national standard for method of measurement of compatibility between wireless communication devices and hearing aids, (ANSI 63.19-2006), American National Standards Institute, New York.
[19]. Ramiro and Chaouki: ’Wireless communications and networking: An overview’,IEEE Antennas Propag. Mag. (USA), Vol. 44, (Feb., 2002).
[20]. Chih-Hua Chang and Kin-Lu Wong: ’Printed λ/8-PIFA for Penta-Band WWAN Operation in the Mobile Phone’, IEEE Antennas Propag., Vol. 57, (May, 2009).
[21]. A. Cabedo, J. Anguera, C. Picher, M. Ribó, C. Puente, “Multi-Band Handset Antenna Combining a PIFA, Slots, and Ground Plane Modes”, IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, (Sep., 2009).
[22]. P. Vainikainen, J. Ollikainen, O. Kivekäs, and I. Kelander, “Resonator-Based Analysis of the Combination of Mobile Handset Antenna and Chassis,” IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, (Oct., 2002).
[23]. C. Picher, J. Anguera, A. Andujar, C. Puente and S. Kahng: ’Analysis of the Human Head Interaction in Handset Antennas with Slotted Ground Planes’, IEEE Trans. On Antennas and Propagat., Vol. 54, No. 2, (April, 2012).
[24]. K.-L. Wong, M.-F. Tu, C.-Y. Wu and W.-Y. Li:’ On-board 7-band WWAN/LTE antenna with small size and compact integration with nearby ground plane in the mobile phone’, Microwave and Optical Tech. Letters, Vol. 52, No. 12, (Sep., 2010).
[25]. Zhengwei Du, Ke Gong and Jeffrey Shiang Fu, “A novel compact wide-band planar antenna for mobile handsets,” IEEE Antennas Propag., Vol. 54, No. 2, (Feb., 2006).
[26]. R. Hossa, A. Byndas, and M. E. Bialkowski, “Improvement of Compact Terminal Antenna Performance by Incorporating Open-End Slots in Ground Plane”, IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, (June, 2004).
[27]. C.A.Balanis, ’Antenna Theory analysis and Design, ’John Wiley & Sons, Inc.1982
[28]. J.D. Kraus and R.J.Marhefka, ’Antennas: for All Applications, ’ Edition, Mcgraw-Hill,2003, p803~p824.
[29]. Leonardo Lizzi and Andrea Massa, ‘Dual-Band Printed Fractal Monopole Antenna for LTE Applications’, IEEE Antennas and Wireless Propagation Letters,Vol. 10, (July, 2011), 760-76.
[30]. C. Icheln, J. Ollikainen, and P. Vainikainen, “Reducing the influence of feed cables on small antenna measurements,” Electron. Lett., vol. 35, no. 15, pp. 1212–1214, July 1999
[31]. Jari Holopainen, Janne Ilvonen, Outi Kivekäs, Risto Valkonen, Clemens Icheln, and Pertti Vainikainen, “Near-Field Control of Handset Antennas Based on Inverted-Top Wavetraps: Focus on Hearing-Aid Compatibility ,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, pp. 592 - 595 ,VOL. 8, 2009.
[32]. R. Hossa, A. Byndas, and M. E. Bialkowski, “Improvement of Compact Terminal Antenna Performance by Incorporating Open-End Slots in Ground Plane”, IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, (June, 2004).
[33]. Kakkar, Sushil and Rani, Shweta, “A novel antenna design with DGS for emergency management”, International journal of Electromagnetics and Mechanics, Vo. 42, No. 4, (June, 2013)
[34]. J. Anguera, I. Sanz, A. Sanz, A. Condes, D. Gala, C. Puente, and J. Soler,“Enhancing the performance of handset antennas by means of ground plane design”, IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (iWAT 2006). New York, USA, (March, 2006).
[35]. Hossain, M.I., Faruque, M.R.I., and Islam, M.T.,“Design and analysis of metamaterial inspired low SAR PIFA for mobile phone”, International journal of Electromagnetics and Mechanics, Vo. 48, No. 4, (July, 2015).
[36]. Rajesh Mongia, Inder J. Bahl, Prakash Bhartia, ’RF and Microwave Coupled- Line Circuits, ’Boston, Artech House,c1999
[37]. SEMCAD X Version 14.2, Manual, Chapter 15. SPEAG, 2010.
[38]. D. M. Pozar. Microwave Engineering. Wiley, 2nd edition, 1997.
[39]. FCC. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, additional information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions. Federal Communications Commission Office of Engineering and Technology Supplement C to OET Bulletin 65, Jun. 2001.
[40]. IEEE std. c95.1b - 2005 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, 2005.
[41]. A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House.
[42]. Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - human models, instrumentation, and procedures - part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). IEC 62209-2, Feb. 2010.
[43]. IEEE. IEEE recommended practice for determining the peak spatialaverage specific absorption rate (SAR) in the human head from wireless communications devices: Measurement techniques. IEEE Standard 1528, pages 1–149, 2003.
[44]. User Equipment (UE) /Mobile Station (MS) Over The Air (OTA) antenna performance. 3rd Generation Partnership Project, Aug. 2007.
[45]. CTIA test plan for mobile station over the air performance, revision 3.0. CTIA Wireless Association, Apr. 2009.
[46]. R. W. P. King, G. S. Smith, M. Owens, and T. T. Wu. Antennas in matter. The MIT Press, 1981.
[47]. P.S. Hall and Y. Hao. Antennas and propagation for body-centric wireless communications. Artech House antennas and propagation library. Artech House, 2006.
[48]. R. S. Elliot. Antenna Theory and Design. Wiley, 2003.
[49]. R. C. Gupta and S. P. Singh. SAR characterization of focused planar array of water-loaded modified box-horns for hyperthermia. International Journal of Infrared and Millimeter Waves, 27(2):273–291, Feb. 2006.
[50]. Robert E. Collin. Field Theory of Guided Waves, 2nd Edition. IEEE Press, 1991.
[51]. European standard CENELEC prEN 50360/peEN50361, ’product standard to demonstrate the compliance of mobile telephone with the basic restrictions related to human exposure to electromagnetic field (300MHz~3GHz) , June.2000.
[52]. Stutzman, W. L., and G. A. Thiele. "Antenna theory and design." New York, John Wiley and Sons, 1981.

無法下載圖示 全文公開日期 2022/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE