簡易檢索 / 詳目顯示

研究生: 張恩誠
En-Cheng Chang
論文名稱: 熱處理製程對以ER5183及ER5556銲條所得Al-Zn-Mg-Zr銲件機械性質之影響
Effects of heat treatment process of Al-Zn-Mg-Zr weldments made with ER5183 and ER5556 filler wires on mechanical properties
指導教授: 吳翼貽
Ye-Ee Wu
口試委員: 余祥雲
none
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋁鋅鎂鋯銲件銲後熱處理ER5183銲條ER5556銲條退化再時效
外文關鍵詞: Al-Zn-Mg-Zr weldments, post-weldong heat treatment, ER5183, ER5556, RRA
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係探討Al-Zn-Mg-Zr合金應用高鎂之ER5183及ER5556銲條所製成銲件,其銲後熱處理製程對銲件機械性質之影響。
本研究內銲件應用適當之銲後頂時效(T6)、過時效(T7)及退化再時效(RRA)熱處理製程,並以硬度試驗、拉伸試驗、金相試驗、掃描式電子顯微鏡(SEM)之破斷面觀察等方法,找出對Al-Zn-Mg-Zr銲件熱處理製程中最適之固溶時間及對銲件機械性質之影響,並以能量散佈光譜儀(EDS),與電子微探分析儀(EPMA)等分析方法,探討銲件錳元素含量對鋅與鎂元素擴散之影響。
研究結果顯示銲後熱處理製程參數受銲條錳含量之影響甚大;錳含量較高銲條所製成之銲件相較於錳含量較低者,其銲道需以較長的固溶處理時間,方能達到相同之析出強化效果。含錳量較高之ER5183銲件經固溶時間160min.之T6、T7與RRA熱處理後,其銲道硬度值與含錳量較低之ER5556銲件經固溶時間120min.者相當;此結果指出,應用較低錳含量銲條所得之銲件,可促進鋅原子在銲道內及銲道與母材間擴散之能力,使得析出強化相易在銲道內生成,並增進銲道的強度。


The objective of this study is to investigate the effect of post-welding heat treatment on mechanical properties of Al-Zn-Mg-Zr weldments made with high-Mg ER5183 and ER5556 filler wires.
Hardness test, tensile test, metallography test, and scanning electron microscope(SEM) observation of fracture surface from tensile test were conducted to identify the most appropriate time for solid solution treatment. The relationship between the time of solid solution treatment and the mechanical properties of Al-Zn-Mg-Zr weldments after post-welding T6, T7 and RRA heat treatments were studied. Energy-dispersive spectrometer(EDS) and electron probe micro analyzer(EPMA) were utilized to characterize the effect of Mn-content on diffusivity of Mg and Zn atoms.
Experimental results show that Mn-content of filler wire has strong impact on the process parameters of post-welding heat treatment. Longer solid solution time is required for welds made with filler wire having higher Mn-content to achieve the same precipitation hardening effect as weld made with filler wire having lowered Mn-content. After T6, T7 and RRA treatments of 160 min. solid solution treatment, the hardness value of the weld made with ER5183 filler wire, which has higher Mn-content than ER5556, is similar to that of the weld made with ER5556 after T6, T7 and RRA treatments of 120 min. solid solution treatment. This result indicates that the low Mn-content can promote the diffusivity of Zn atoms in the fusion zone and the ability to diffuse across the boundary between the fusion zone and the base metal, which in turn would stimulate the forming of strengthening phase to increase the strength of the weld.

摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究方法 3 第二章 文獻探討 4 2.1 鋁及鋁合金之簡介 4 2.1.1 鋁合金之分類與介紹 4 2.1.2 7xxx系鋁合金之析出強化機制 6 2.1.3 合金元素對7xxx鋁合金之影響 10 2.2 7xxx系列鋁合金熱處理 12 2.2.1 熱處理製程之介紹 12 2.2.2 低溫人工時效熱處理 12 2.2.3 T6熱處理 12 2.2.4 T7熱處理 13 2.2.5 退化再時效熱處理(Retrogression and Reaging, RRA) 13 2.3 鋁合金銲接性質 15 2.3.1 銲接之定義與種類 15 2.3.2 鋁合金銲接 16 2.3.3 鋁合金之銲條選擇 16 2.3.4 鋁合金銲接之缺陷 18 2.4 鋁合金惰氣鎢極電弧銲 20 2.4.1 TIG銲接優缺點 21 2.4.2 TIG電弧極性之比較 22 2.4.3 遮護氣體之作用 23 第三章 實驗方法 26 3.1 材料選用 27 3.2 銲接製程 28 3.2.1 銲接設備 28 3.2.2 銲接參數 29 3.3 銲後熱處理製程 31 3.4 顯微組織觀察 33 3.5 硬度試驗 36 3.6 拉伸試驗 37 3.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38 3.8 電子微探分析儀(Electron Probe Micro Analyzer, EPMA) 39 第四章 結果與討論 40 4.1 銲後熱處理製程對ER5183及ER5556銲件硬度之影響 40 4.1.1 銲件未經銲後熱處理之硬度變化 40 4.1.2 銲件經銲後固溶處理之硬度變化 41 4.1.3 銲件經銲後頂時效熱處理(T6)之硬度變化 43 4.1.4 銲件經銲後過時效熱處理(T7)之硬度變化 45 4.1.5 銲件經退化再時效熱處理(RRA)之硬度變化 47 4.1.6 ER5183與ER5556銲件硬度變化 49 4.2 金相顯微組織 51 4.3 銲後熱處理對ER5183及ER5556銲件抗拉強度之影響 54 4.4 破斷面觀察 60 4.5 銲後熱處理對ER5183及ER5556銲件元素擴散之影響 65 4.5.1 固溶時間對銲件元素擴散之影響 65 4.5.2 銲條元素對銲件擴散之影響 69 4.6 電子微探分析儀-元素X光影像銲件元素分佈觀察 72 第五章 結論 77 第六章 建議 78 參考文獻 79 作者簡介 83

1. J. Gonner, Aluminium, vol. 64, pp.916-919, 1987.
2. 林昆民,銲條合金成份對AA7005鋁合金擠型材銲後熱處理製程之影響,國立台灣科技大學機械工程研究所碩士論文,民國94年6月。
3. J.L. Ning, D.M. Jiang, X.G. Fan, Z.H. Lai, Q.C. Meng, and D.L. Wang, “Mechanical properties and microstructure of Al-Mg-Mn-Zr alloy processed by equal channel angular pressing at elevated temperature,” Materials Characterization 59, pp.306-311, 2008.
4. P.Z. Zhao, and T. Tsuchida, “Effect of fabrication conditions and Cr, Zr contents on the grain structure of 7075 and 6061 aluminum alloys,” Materials Science and Engineering A 499, pp. 78-82, 2009,
5. D.R. Askeland and P.P phulé, The Science and Engineering of Materials, THOMSON, international student ed., pp. 503-509.
6. J.J. Thompson, E.S. Tankins and V.S. Agarwala, “A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7xxx Aluminum Alloys,” Materials Performance, Vol. 26, pp. 45-52, 1987.
7. D.A. Porter, K.E. Easterling, “Phase Transformation in Metals and Alloy,” 2nd ed, pp.144-147, 1992.
8. J.C. Werenskiold, A. Deschamps and Y. Brechet, “Characterization and Modeling of Precipitation Kinetics in an Al-Zn-Mg Alloys,” Materials Science and Engineering A, Vol. A293, pp.267-274, 2000.
9. 劉國雄,林樹均與葉均蔚,鋁及鋁合金的製造,民國74年。
10. D. Altenpohl, Aluminium and Aluminuim Legierungen, Springer Verlag, p. 773, 1965.
11. W. Gruhl, “The Stress Corrosion Behavior of High Strength Al-Zn-Mg Alloys,” Aluminium, Vol. 54, pp. 323-325, 1978.
12. W. Gruhl, “The Stress-Corrosion Behavior of High-Strength Al-Zn-Mg Alloys,” International Congress on Aluminum Alloys in the Aircraft Industry, pp. 171-174, 1976.
13. H.T. Kim, S.W. Nam and S.H. Hwang, “Study on the solidfication cracking behaviour of high strength aluminum alloy welds-effect of alloying elements and solidfication behaviours,” Journal of Materials Science, vol. 31, pp. 2859-2864, 1996.
14. Z. Lin, H. Ru, G. Zhao and G. Sun: 10th International Congress on Metallic Corrosion, Vol. 3, pp. 2369-2378, 1988.
15. F.M. Mazzolani, Aluminum and Aluminum Structure, 2nd ed., pp. 7-8, 1987.
16. I.J. Polmear, “The Properties of Commercial Al-Zn-Mg Alloys: Practical Implications of Trace Additions of Silver,” Journal of the Japan Institute of Metals, Vol. 89, pp. 193-202, 1960.
17. H. Tsubakino, A. Yamamoto and T. Ohnishi, “Effect of Fe and Si on Precipitation of 7050 Aluminum Alloys,” International Conference on Thermo-mechanical Processing of Steels and Other Materials, pp. 1059-1064, 1997.
18. P.N.T. Unwin and R.B. Nicholson, “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg alloys,” Acta Metallurgica, Vol. 17, pp. 1379-1393, 1969.
19. 黃清添,析出製程參數對AA7005鋁擠型合金機械性質與抗應力腐蝕之影響,國立台灣科技大學機械工程研究所碩士論文,民國92年。
20. J.K. Park and A.J. Ardell, “Microstructures of the Commercial 7075 Al Alloys in the T651 and T7 Tempers,” Metallurgical Transaction A, Vol. 14A, pp. 1957-1965, 1983.
21. M.O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys,” Metallurgical Transaction A, Vol. 6A, pp. 631-642, 1975.
22. T. Engdahl, V. Hansen, P.J. Warren and K. Stiller, “Investigation of Fine Scale Precipitates in Al-Zn-Mg Alloys after Various Heat Treatments,” Materials Science and Engineering A, pp. 59-64, 2002.
23. B.M. Cina, “Aluminum Industrial Products,” NASA Contractor Reports, U. S. Patent 3856584, 1974.
24. M. Talianker and B. Cina, “Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys,” Metallurgical Transactions A, Vol. 20A, pp. 2087-2092, 1989.
25. J. Robinson and P. Flynn, “Effects of Thermal Treatments on the Stress Corrosion Cracking Resistance of Forgings of the Aluminum Alloy 7010,” Key Engineering Materials, Vol. 99-100, pp. 143-150, 1995.
26. 徐煌仁,AA7005鋁合金擠型材熱處理製程之研究,國立台灣科技大學機械工程研究所碩士論文,民國九十一年。
27. N.C. Danh, K. Rajan, and W. Wallace, “A TEM Study of Microstructural Changes during Retrogression and Reaging in 7075 Aluminum,” Metallurgical Transactions A, Vol. 14A, pp. 1843-1850, 1983.
28. W. Wallace, J.C. Beddoes and M.C. deMalherbe, “A New Approach to the Problem of Stress Corrosion Cracking in 7075-T6 Aluminum,” Aeronautics and Space Journal, Vol. 27, pp. 22-23, 1981.
29. M.U. Islam and W. Wallace, “Retrogression and Reaging Response of 7475 Aluminum Alloy,” Metals Technology, Vol. 10, pp. 386-392, 1983.
30. K. Rajan, W. Wallace and J.C. Beddoes, “Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy,” Journal of Materials Science, Vol. 17, p. 2817, 1982.
31. 王振欽,銲接學,高立圖書有限公司,第三版,第1-1、10-1~10-21、21-1~21-7頁,民國九十一年。
32. W.H. Cubberly, Metals Handbook, American Society For Metals, Vol. 2, 9th ed., p.194, 1986.
33. 姜志華,鋁合金電弧銲接及硬軟銲應用技術,徐氏基金會,第59~81頁、第211~230頁,民國八十四年五月。
34. S. Kou, Welding Metallurgy, John Wiley and Sons, New York, pp. 129-295, 1987.
35. J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM, pp. 376-419, 1993.
36. http://tzywen.com/modules.php?name=News&file=print&sid=625
37. The Aluminum Association, Inc, International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, 2009
38. W.R. Oates, Welding Handbook, American Welding Society, Vol. 3, pp. 30-41, 1987
39. 尤聖名,Al-Zn-Mg-Zr銲件銲後熱處理參數對機械性質之影響,國立台灣科技大學機械工程研究所碩士論文,民國九十九年。
40. 林樹均、葉均蔚、劉增豐與李勝隆,材料工程實驗與原理,全華科技圖書股份有限公司,2006。
41. ASM, Metals Handbook: Metallurgy and Microstructure, 9th ed., Vol. 9, pp. 351-360, 1985.
42. ASTM Standards B557-94, Standard Test Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products, pp. 411-423, 1994.
43. 蔡和晉,錳元素含量對AA7003鋁合金銲件銲後熱處理製程影響之研究,國立台灣科技大學機械工程研究所碩士論文,民國九十七年。
44. D.S. Park and S.W. Nam, “Effects of Manganese Dispersoid on the Mechanical Properties in Al-Zn-Mg Alloys,” Journal of Materials Science, vol. 30, pp. 1313-1320, 1995.
45. R.A. Woods, “Metal Transfer in Aluminum Alloys,” Welding Journal, Vol. 59, pp. 59-66, 1980.

QR CODE