簡易檢索 / 詳目顯示

研究生: 黃保仁
BAO-REN HUANG
論文名稱: 耦合微帶線之遠端雜訊消除
Elimination of Far-end Noise on Coupled Microstrip Line
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
楊成發
Chang-Fa Yang
曾昭雄
Chao-hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 138
中文關鍵詞: 差模雜訊共模雜訊遠端串音近端串音差動傳輸線耦合微帶線
外文關鍵詞: differential mode noise, common mode noise, far-end crosstalk, near-end crosstalk, differential transmission line, coupled microstrip line
相關次數: 點閱:507下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出使用補償電感及電容的直角差動傳輸線,來降低直角差動傳輸線的共模雜訊。這個架構可以大大地降低頻域差模轉共模的模轉換,最大出現30 dB 的降幅,並且可以將時域穿透共模雜訊從0.056 V 減少至0.019 V。除此之外,與使用補償電感或補償電容的結構相比,這個結構所佔的面積相當少,不但可以節省印電路製作的成本,並且可以減少低頻的反射量。
另外,為了降低耦合微帶線的遠端串音雜訊,本論文提出使用前置電容的耦合微帶線。相較於前人的研究,使用前置電容的耦合微帶線可以減少繞線的複雜度,進而降低電路製作成本,並且其可使遠端串音從55 mV下降至26.8 mV。此外,其遠端串音雜訊為一對稱波形,如果接收端使用一個積分器,則遠端串音將相消為零。為了降低使用前置電容的耦合微帶線所造成的近端高脈波串音,以及進一步降低遠端串音雜訊,本論文提出使用分散式電容的耦合微帶線。相較於使用前置電容的耦合微帶線,使用分散式電容的耦合微帶線可以將近端串音的峰值,從71 mV 下降至28 mV,並且可以將遠端串音降至幾乎為零。


In this thesis, to eliminate the common mode noise induced by the right-angled differential transmission line, an inductance-compensated and capacitance-compensated right-angled differential transmission line is proposed. The frequency-domain differential-to-common mode conversion is greatly reduced, having a maximum reduction of 30 dB, and the time-domain common mode noise is reduced from 0.056 V to 0.019 V. Besides, as compared with the inductance-compensated right-angled differential transmission line or the capacitance-compensated right-angled differential transmission line, the circuit size is greatly reduced, which in turn saves the production cost and reduces the low frequency reflection coefficient.
Besides, to reduce the far-end crosstalk noise induced by the coupled microtrip line, a coupled microstrip line using the front-end capacitor is proposed. As compared with the literatures, the coupled microstrip line using the front-end capacitor can eliminate the routing complexity and reduce the far-end crosstalk noise from 55 mV to 26.8 mV. Also, since the far-end crosstalk noise has an antisymmetric waveform, the far-end crosstalk noise can be totally eliminated when the receiver uses an integrator. In order to reduce the near-end impulse crosstalk noise and further reduce the far-end crosstalk noise induced by the coupled microstrip line using the front-end capacitor, a coupled microstrip line using the distributed capacitors is proposed. As compared with the coupled microstrip line using the front-end capacitor, the near-end crosstalk noise can be reduced from 71 mV to 28 mV while the far-end crosstalk noise is nearly zero.

目錄 摘要..........................................................................I Abstract....................................................................II 目錄.........................................................................IV 圖目錄.....................................................................VIII 表目錄......................................................................XIV 第一章 序論.................................................................1 1.1 研究動機...............................................................1 1.2 文獻探討...............................................................2 1.3 論文貢獻...............................................................10 1.4 論文架構...............................................................11 第二章 直角差動傳輸線之共模雜訊消除................................................13 2.1 直角差動傳輸線.............................................................15 2.1.1 頻域穿透及反射之模擬與量測.............................................15 2.1.2 時域穿透及反射之模擬與量測.............................................20 2.1.3 等效電路............................................................24 2.2 使用補償電感及電容之直角差動傳輸線.............................................30 2.2.1 補償電感與電容之設計方式 ..............................................30 2.2.1.1 補償電感之設計方式......................................................31 2.2.1.2 補償電容之設計方式......................................................35 2.2.2 頻域穿透及反射之模擬與量測.............................................36 2.2.3 時域穿透及反射之模擬與量測.............................................43 2.3 小結......................................................................47 第三章 耦合微帶線之遠端串音消除...................................................49 3.1 傳統的耦合微帶.............................................................52 3.1.1 耦合微帶線之奇偶模等效電路及參數........................................52 3.1.1.1 奇模激發下的等效電路及參數..............................52 3.1.1.2 偶模激發下的等效電路及參數..............................53 3.1.2 理想耦合微帶線.......................................................54 3.1.2.1 遠端串音雜訊..........................................55 3.1.2.2 近端串音雜訊..........................................59 3.1.3 有色散效應之耦合微帶線.................................................60 3.1.3.1 遠端串音雜訊...................................................60 3.1.3.2 近端串音雜訊..........................................63 3.1.4 有損有色散效應之耦合微帶線..............................................64 3.1.4.1 遠端串音雜訊...................................................64 3.1.4.2 近端串音雜訊..........................................67 3.1.4.3 訊號品質......................................................69 3.2 前置電容的耦合微帶線.........................................................72 3.2.1 前置電容耦合微帶線之奇偶模等效電路及參數..................................73 3.2.1.1 奇模激發下的等效電路及參數..............................74 3.2.1.2 偶模激發下的等效電路及參數..............................74 3.2.2 前置電容理想耦合微帶線.................................................75 3.2.2.1 遠端串音雜訊..........................................75 3.2.2.2 近端串音雜訊..........................................81 3.2.3 有色散效應之前置電容耦合微帶線…………….....................................81 3.2.3.1 遠端串音雜訊..........................................82 3.2.3.2 近端串音雜訊..........................................84 3.2.4 有損有色散效應之耦合微帶線.............................................85 3.2.4.1 遠端串音雜訊..........................................86 3.2.4.2 近端串音雜訊..........................................89 3.2.4.3 訊號品質......................................................91 3.3 使用分散式電容的耦合微帶線...................................................94 3.3.1 遠端串音雜訊.........................................................96 3.3.2 近端串音雜訊.........................................................96 3.4小結.......................................................................98 第四章 結論...................................................................100 參考文獻......................................................................103 附錄A 使用0.2pF的補償電感及電容之直角差動傳輸線....................................106 附錄B 分散式電容耦合微帶線之射散參數..............................................110 附錄C π模型和T模型的補償電感及電容之直角差動傳輸線比較...............................115 附錄D MURATA電容器的等效串聯電感之影響...........................................118 圖目錄 圖1.1 使用電介層覆蓋的耦合微帶線。(a)上視面,(b)橫截面。………3 圖1.2 使用兩端開路防護線的耦合微帶線。………………………….4 圖1.3 使用接地防護線的耦合微帶線。……………………………….4 圖1.4 使用電介層覆蓋與接地防護線的耦合微帶線。(a)上視面,(b) 橫截面。…………………………………………………………………..4 圖1.5 使用蛇線防護線的耦合微帶線。……………………………….5 圖1.6 使用交叉殘段的耦合微帶線。………………………………...5 圖1.7 使用破壞性地面結構的差動傳輸線。………………………….7 圖1.8 使用補償電容的直角差動傳輸線。…………………………….8 圖1.9 使用強耦合微帶線的直角差動傳輸線。……………………….9 圖1.10 使用補償電感的直角差動傳輸線。…………………………9 圖2.1 差動傳輸線架構。……………………………………………...14 圖2.2 PCB 上之佈線情況。…………………………………………...14 圖2.3 直角差動傳輸線結構。(a)上視面,(b)橫截面。………………..17 圖2.4 直角差動傳輸線的實際電路圖。……………………………...18 圖2.5 直角差動傳輸線之頻域模擬與量測結果。(a) |Sc2d1|,(b) |Sd2d1|, (c) |Sc1d1|,(d)| Sd1d1|。……………………………………………………..18 圖2.6 直角差動傳輸線的時域模擬圖。……………………………...22 圖2.7 直角差動傳輸線之時域模擬與量測結果。(a)TDT 共模雜訊, (b)TDR 差模雜訊。……………………………………………………...23 圖2.8 直角差動傳輸線的等效電路圖。……………………………...25 圖2.9 直角差動傳輸線之等效電路模擬圖。………………………...26 圖2.10 直角差動傳輸線之等效電路模擬結果、全波模擬結果及量測 結果比較圖。(a)|S11|,(b)|S12|,(c)|S13|,(d)|S14|,(e)|S22|,(f)|S24|…..27 圖2.11 僅有補償電感之直角差動傳輸線。………………………….33 圖2.12 僅有補償電感之直角差動傳輸線之等效電路。…………….34 圖2.13 非對稱耦合線的等效電路圖。……………………………….34 圖2.14 使用補償電感及電容之直角差動傳輸線。………………….35 圖2.15 使用補償電感及電容之直角差動傳輸線的等效電路。…….36 圖2.16 使用Via 接地與直接接地之最佳補償電容的模轉換。……..39 圖2.17 使用Via 接地的補償電感及電容之直角差動傳輸線架構。..39 圖2.18 補償電容等效電路(a)電容直接接地,(b)使用Via接地。…….40 圖2.19 使用補償電感及電容之直角差動傳輸線之頻域模擬與量測結 果。(a) |Sc2d1|,(b) |Sd2d1|,(c) |Sc1d1|,(d)| Sd1d1|。……………………...41 圖2.20 補償電感及電容之直角差動傳輸線之實際電路。………….43 圖2.21 使用補償電感及電容的直角差動傳輸線之時域模擬圖。…45 圖2.22 使用補償電感及電容的直角差動傳輸線之時域模擬與量測 結果。(a)TDT共模雜訊,(b)TDR差模雜訊。…………………………...46 圖2.23 使用不同補償電容值之時域穿透共模雜訊。……………….47 圖3.1 耦合微帶線架構。(a)示意圖,(b)等效電路圖。………………..50 圖3.2 在靜態線上的雜訊。(a)近端串音雜訊,(b)遠端串音雜訊。…51 圖3.3 奇模訊號激發下的等效路。…………………………………...53 圖3.4 偶模訊號激發下的等效路。……………………………...……54 圖3.5 理想耦合傳輸線的時域模擬圖。(a)直接激發,(b)偶模激發, (c)奇模激發。……………………………………………………………57 圖3.6 理想耦合傳輸線的遠端串音雜訊模擬結果。(a)奇模激發及偶 模激發的接收訊號,(b)遠端串音雜訊。……………………………….58 圖3.7 理想耦合傳輸線的近端串音雜訊模擬結果。………………...60 圖3.8 色散耦合微帶線的遠端串音雜訊模擬結果。(a)奇模激發及偶 模激發的接收訊號,(b)遠端串音雜訊。……………………………….62 圖3.9 色散耦合微帶線的近端串音雜訊模擬結果。………………...63 圖3.10 有損有色散耦合微帶線的遠端串音雜訊模擬與量測比較圖。 (a)奇模激發及偶模激發的接收訊號,(b)遠端串音雜訊。…………….66 圖3.11 耦合微帶線實際電路圖。…………………………………….67 圖3.12 有損有色散耦合微帶線的近端串音雜訊之模擬與量測比較 圖。………………………………………………………………………68 圖3.13 有損有色散耦合微帶線之眼圖。 (a) Bit rate = 2 Gbps 且tr = 50 ps,(b) Bit rate = 4 Gbps 且tr = 25 ps,(c) Bit rate = 8 Gbps 且tr = 12.5 ps,(d) Bit rate = 16 Gbps 且tr = 6.25 ps。……………………………….70 圖3.14 前置電容耦合微帶線架構。(a)示意圖,(b)等效電路圖。……73 圖3.15 奇模訊號激發下的等效路。………………………………….74 圖3.16 前置電容理想耦合傳輸線的時域模擬圖。(a)直接激發,(b) 偶模激發,(c)奇模激發。………………………………………………..78 圖3.17 前置電容理想耦合傳輸線的遠端串音雜訊模擬結果。(a)奇模 激發及偶模激發的接收訊號,(b)遠端串音雜訊。…………………….79 圖3.18 前置電容理想耦合傳輸線在奇模訊號下的近端等效電路。.80 圖3.19 前置電容理想耦合傳輸線的近端串音雜訊模擬結果。…….81 圖3.20 有色散效應前置電容耦合微帶線的遠端串音雜訊模擬結果。 (a)奇模激發及偶模激發的接收訊號,(b)遠端串音雜訊。…………….83 圖3.21 有色散效應前置電容耦合微帶線的近端串音雜訊模擬結 果。………………………………………………………………………85 圖3.22 有損有色散前置電容耦合微帶線的遠端串音雜訊模擬與量 測比較圖。(a)奇模激發及偶模激發的接收訊號,(b)遠端串音雜訊。...88 圖3.23 前置電容耦合微帶線實際電路圖。………….………………89 圖3.24 有損有色散前置電容耦合微帶線的近端串音雜訊之模擬與 量測比較圖。……………………………………………………………90 圖3.25 有損有色散前置電容耦合微帶線之眼圖。 (a) Bit rate = 2 Gbps 且tr = 50 ps,(b) Bit rate = 4 Gbps 且tr = 25 ps,(c) Bit rate = 8 Gbps 且tr = 12.5 ps,(d) Bit rate = 16 Gbps 且tr = 6.25 ps。…………………..92 圖3.26 分散式電容耦合微帶線的時域模擬圖。…………………….95 圖3.27 分散式電容耦合微帶線的遠端串音雜訊模擬結果。……….96 圖3.28 分散式電容耦合微帶線的近端串音雜訊模擬結果。.………97 圖 A.1 補償電感及電容之直角差動傳輸線。………………………107 圖A.2 使用Via 接地的補償電感及電容之直角差動傳輸線。….....108 圖A.3 補償電感及電容之直角差動傳輸線的模轉換。……………109 圖B.1 分散式電容耦合微帶線。……………………………………111 圖B.2 分散式電容耦合微帶線之S 參數。(a)| S11|,(b) |S12|,(c) | S13|,(d) | S14|。………………………………………………………111 圖B.3 分散式電容耦合微帶線之 (a) 時域反射雜訊,(b) 時域穿透 號。…………………………………………………………..…………114 圖C.1 T 模型的補償電感及電容之直角差動傳輸線。………...…..115 圖C.2 π 模型和T 模型的模轉換比較。……………………………..116 圖C.3 僅有補償電感架構在f=5 GHz 時的電流分佈。…………….116 圖D.1 MURATA電容與Ideal 電容之頻域模擬。…………………..117 圖D.2 MURATA 電容與Ideal 電容之比較。(a) |S11|,(b) |S12|。…118 表目錄 表2.1 直角差動傳輸線轉角的等效電路參數值。……………....…...26 表2.2 補償電感之直角差動傳輸線的等效電路參數。………...……34 表2.3 補償電感及電容之直角差動傳輸線的等效電路參數。….......36 表3.1 耦合微帶線的等效電路參數。………………………………...56 表3.2 耦合微帶線的奇偶模參數。…………………………………...56 表3.3 使用不同Bit rate 與tr所產生的眼高、眼寬及抖動值。……….72 表3.4 使用不同Bit rate 與tr所產生的眼高、眼寬及抖動值。……….94 表3.5 使用不同Δl 所對應的分散電容數目及大小。……………...…95 表A.1 補償電感及電容之直角差動傳輸線的等效電路參數。……108

[1] J. A. DeFalco, “Reflection and crosstalk in logic circuit interconnections,” IEEE Spectrum, 1970.
[2] T. R. Gazizov, “Far-end crosstalk reduction in double-layered dielectric interconnects,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 566–572, Nov. 2001.
[3] D. Brooks, Signal Integrity Issues and Printed Circuit Board Design. New York: Prentice Hall, pp. 233–234, 2003.
[4] L. Zhi, W. Qiang, and S. Changsheng, “Application of guard traces with vias in the rf pcb layout,” in Proc. IEEE 3rd International Symposium on Electromagnetic Compatibility, pp. 771-774, May, 2002.
[5] Y. S. Cheng, W. D. Guo, C. P. Hung, R. B. Wu, and D. D. Zutter, “Enhanced microstrip guard trace for ringing noise suppression using a dielectric superstrate, ” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 961–968, Nov. 2010.
[6] K. Lee, H. B. Lee, H. K. Jung, J. Y. Sim, and H. J. Park, “A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstrip lines,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 809–817, Nov. 2008.
[7] S. K. Lee, K. Lee, H. J. Park, and J. Y. Sim, “FEXT-eliminated stub-alternated microstrip line formulti-gigabit/second parallel links,” Electron. Lett., vol. 44, no. 4, pp.272–273, Feb. 2008.
[8] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design. New York: Wiley, pp. 140–141, 2000.
[9] G. H. Shiue and R. B. Wu, “Reduction in reflections and ground bounce for signal line through a split power by using differential coupled microstrip lines,” in Proc. IEEE 12th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 107–110, Princeton, New Jersey, USA, Oct. 2003.
[10] W. D. Guo, G. H. Shiue, C. M. Lin, and R. B. Wu, “Comparisons between serpentine and flat spiral delay line on transient reflection/transmission waveforms and eye diagrams,” IEEE Trans. Microw. Theory Tech., vol. 54, pp.1379–1387, Apr. 2006.
[11] M. Tayarani and S. Khosravi, “Differential to common mode coupling in microstrip lines; calculation and improvement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 293–296, Florida, USA, Nov. 2007.
[12] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, “An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 248–250, Apr. 2008.
[13] S. J. Wu, C. H, Tsai, T. L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no.4, pp. 848-855, Apr. 2009.
[14] C.-H. Tsai and T.-L. Wu, “A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative-permittivity metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 58, no.1, pp. 195-202, Jan. 2010.
[15] G. H. Shiue, W. D. Guo, C. M. Lin, and R. B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Adv. Packag., vol. 29, pp. 560–569, Aug. 2006.
[16] C. Gazda, D. V. Ginste , H. Rogier, R. B. Wu, and D. D. Zutter, “A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips,” IEEE Trans. Adv. Packag., vol. 33, pp. 969–978, Nov. 2010.
[17] C. H. Chang, R. Y. Fang, and C. L. Wang, “Bended differential transmission line using short-circuited coupled line for common-node noise suppression,” in Proc. IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, pp. 291–294, San Jose, CA, USA, 2011.
[18] C. H. Chang, R. Y. Fang, and C. L. Wang, “Bended differential transmission line using compensation inductance for common-mode noise suppression,” IEEE Trans. Compo. Packag. Manu. Tech., vol. 2, pp. 1518–1525, Sep. 2012.
[19] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, Microstrip Lines and Slotlines. Artech House on Demand, pp. 458-486, 1996.
[20] B. Eric, Signal and Power Integrity – Simplified. New York: Prentice Hall, pp. 546-549, 2009.

QR CODE