簡易檢索 / 詳目顯示

研究生: 林佑珊
Yu-shan Lin
論文名稱: 以光學干涉研探類岩粒徑大小與形狀於壓、剪過程破壞演化
Effects of Grain Size and Shape in Rock-like Material on the Evolution of failure under Compression and Shearing using Technique of Electronic Speckle Pattern Intreferometry.
指導教授: 陳堯中
Yao-chung Chen
口試委員: 黃兆龍
Chao-lung Hwang
陳立憲
Li-hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 139
中文關鍵詞: 單軸壓縮試驗斜向剪切試驗儀齡期預裂初裂、
外文關鍵詞: uniaxial compressive test, propogation
相關次數: 點閱:278下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電子斑紋干涉術(Electronic Speckle Pattern Interferometry , ESPI)為主,輔以聲射技術(Acoustic Emission , AE), 針對壓、剪力兩種破壞模式,進行一系列探討。選用純水泥漿、水泥砂漿或混凝土作為人造類岩材料。
    單壓試驗中藉由改變:(1)材料;(2)水膠比;(3)齡期;斜剪試驗改變:(1)顆粒大小;(2)預裂有無;(3)剪切角度等變數,採位移控制求得完整之加載歷程,並以非破壞之光學技術觀察初裂時機及位置。
    單壓試驗隨齡期增加,巨觀裂縫由剪裂模式轉為劈裂,而加載歷程中,峰前勁度及尖峰強度有漸增之趨勢,峰後行為也由穩定型破壞 (classⅠ) 變成非穩定型破壞 (classⅡ)。由微觀角度,剪裂之初裂位置由試體旁邊開始發生,劈裂之初裂位置大約位於中央,且初裂時機比剪裂模式早。
    根據斜向剪切試驗結果,相同剪角下,粒徑大小對尖峰強度無顯著影響,峰後行為隨粒徑越大,有越穩定趨勢;相同粒徑下,剪角增加,峰前勁度與尖峰剪應力有變小的趨勢,利用微觀非破壞檢測方法,初裂位置皆大略由試體中央發生,圓孔型預裂縫試體之初裂角至裂衍角漸漸受剪切盒束制影響,有變小趨勢。
    利用聲射法觀察材料微裂之演化,可研判其叢聚之發生時機與其位置,再與電子斑紋干涉術所觀察到之初裂與裂衍位置比對,發現兩者所觀察到之破壞趨勢約略一致。


    This research studied the fracture evolution of rock-like material under compressive and shear stress conditions by using ESPI (electronic speckle pattern interferometry) together with AE (acoustic emission) technique. Test materials include paste, mortar, and concrete.
    Complete loading curves were obtained by stroke-controlled loading process. Both timing and location of the crack initiation was observed by nondestructive ESPI technique. Several factors were investigated, such as material type, water-cement ratio, age, grain size, and grain shape.
    From the macroscopic point of view, for uniaxial compressive test specimens with increasing age, the fracture pattern changes from shear failure to splitting failure, pre-peak stiffness and strength also increases, and post peak behavior changes from class I to class Ⅱ. As observed by ESPI, the macrocrack initiated from the side of the specimen for shear fracture pattern, and the crack initiated from the central portion of the specimen for splitting fracture pattern at lower loading level.
    For inclined shear tests at the condition of same inclined shear angle, test results show that grain size has no obvious effect on the strength and the post peak behavior tends to be more stable with increasing grain size. At the condition of same grain size, pre-peak stiffness and peak shear stress decreases with increasing shear angle. The macrocracks initiated more or less at the central portions of the specimens. The crack inclination angle decreases during crack propagation by the constraint of shear box for specimen with pre-existing central circular hole.
    The locations of microcracks inside the specimens were observed by AE technique. The localization timing and position of microcracks were found to be consistent with the position of initial macrocrack as observed by ESPI.
    Keywords: uniaxial compressive test, inclined shear test, age, pre-existing crack, crack initiation , propogation, electronic speckle pattern interferometry (ESPI).

    論 文 摘 要 I ABSTRACT III 目錄 V 表目錄 VIII 圖目錄 IX 符號對照表 XIII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究方法與範圍 3 1.4論文內容 5 第二章 文獻回顧 8 2.1 單軸壓縮試驗沿革 8 2.1.1 單軸壓縮試驗完整應力應變曲線 8 2.1.2 單軸壓縮試驗峰後曲線類型 9 2.2剪力行為之破壞模式 9 2.2.1 延性與脆性破壞理論 10 2.2.2岩材力與變形的行為 12 2.2.3 剪力試驗破壞型態 12 2.2.4 無填充物之弱面粗糙角定義 13 2.3 線彈性破壞力學沿革與應用 17 2.3.1觀念緣起 17 2.3.2理論發展 18 2.3.3 Griffith能量平衡理論 19 2.3.4應力強度因子與破壞韌度 21 2.4 非破壞光學檢測-電子斑紋干涉術沿革與應用 21 2.4.1光測力學基本理論 21 2.4.2電子斑紋干涉術 22 2.4.3干涉之面內位移與量測原理 24 2.4.4 斑點效應特性 27 2.5非破壞檢測-聲射技術之原理與應用 27 2.5.1 聲射定位準則 29 第三章 試驗架構與執行 42 3.1材料選配及試體製作 42 3.1.1 試體材料 42 3.1.2試體製作流程 44 3.1.3 基本力學試驗及結果 47 3.2試驗儀器設備 49 3.2.1萬能油壓伺服系統 49 3.2.2 單壓試驗設備 49 3.2.3斜剪試驗設備 50 3.2.4聲射(AE)儀器 52 3.2.5電子斑紋干涉技術(ESPI)儀器 53 3.3方法與流程 56 3.3.1試驗前伺服系統校正 56 3.3.2 試驗前非破壞光學校正 57 3.3.3單壓試驗步驟 57 3.3.4不同剪角之斜剪破裂試驗步驟 58 第四章 試驗結果與分析 80 4.1試驗參數說明 80 4.2 內幾何對巨觀破壞行為之影響 83 4.2.1 內幾何與齡期對單壓加載歷程之影響 83 4.2.2 齡期對巨觀裂縫之影響 83 4.3 剪切角度與幾何形狀對巨觀破壞行為之影響 85 4.3.1 不同粒徑大小於相同剪角下之加載歷程 85 4.3.2 剪角及預裂縫對斜剪加載歷程之影響 85 4.3.3 不同剪角下之裂衍特徵 86 4.3.4斜向剪切試驗之粗糙角求算 88 4.4單壓試驗中齡期與內幾何對微觀裂隙演化之影響 88 4.4.1 內幾何不同之空間演化 88 4.4.2 不同齡期之空間演化 89 4.4.3齡期對試體微觀行為之時間演化 90 4.5剪切角度與內部幾何對微觀裂隙演化之影響 90 4.5.1 ESPI微觀之裂衍特徵 90 4.5.2 不同剪切角度之空間演化 91 4.5.3 內幾何之空間演化 92 4.5.4 外幾何之空間演化 92 4.5.5剪角對試體微觀行為之時間演化 92 4.6複合式非破壞檢測耦合比對 93 4.6.1 單壓試驗微震裂源叢聚、初裂與裂衍之比對 94 4.6.2 斜剪試驗微震裂源叢聚、初裂與裂衍之比對 94 第五章 結論與建議 126 5.1結論 126 5.1.1 巨觀破壞行為 126 5.1.2 微觀破壞行為 127 5.1.3非破壞檢測之耦合 128 5.2 建議 129 5.2.1 試體材料建議 129 5.2.2 破壞性試驗建議 130 5.2.3 非破壞性建議 130 參考文獻 131 附錄A:附圖 134 附 錄B :委員意見覆核表 138

    1.小林英男,「破壞力學」,龍璟文化,台北 (2002)。
    2.巫奇穎,「同步化聲光非破壞檢測研探類岩材料於貫切破壞之群刀效應」,碩士論文,國立臺北科技大學土木工程系,台北 (2008)。
    3.李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
    4.李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
    5.胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
    6.洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台灣大學土木工程學系,台北 (1989)。
    7.張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
    8.黃兆龍,「混凝土性質與行為」,詹氏出版社,台北 (1997)。
    9.黃國忠,「應用聲射法與分離元素法探討擬脆性岩材破壞機理之研究」,博士論文,國立台灣科技大學營建工程系,台北 (2008)。
    10.楊文欣,「非破壞性聲光同步技術佐驗類岩斜剪試驗之剪角影響與預裂效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
    11.楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
    12.劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
    13.劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
    14.應傳智,「人工軟弱岩石之研究」,碩士論文,國立台灣大學土木工程系,台北(1995)。
    15.魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
    16.Barton, N. R. "A Relationship Between Joint Roughness and Joint Shear Strength," Proc. Intl. Sym. Rock Fracture, Nancy , France,pp.1-8 (1971).
    17. Bray, D. E., and McBride, D., " Acoustic Emission Technology, Nondestructive
    Testing Techniques," New York, pp. 345-377 (1992).
    18.Butters, J. N and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, ”Vol. 4, pp. 349-354 (1971).
    19.Butters, J. N. and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, Vol. 4, pp.349-354 (1971).
    20.Chen, L. H., "Failure of Rock Under Normal Wedge Indentation," Ph. D. Thesis, University of Minnesota, USA (2002).
    21.Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools," International Journal of Rock Mechanics and Mining Sciences. Vol. 43, pp. 1023-1033 (2006).
    22. Everling, G., "Comment upon the definition of shear strength," International Journal of Rock Mechanics and Mining Sciences, Vol. 1, pp.145-154 (1964).
    23. Gabor, D., "A new microscopic principle," Nature, Vol.161, pp.777-778 (1948).
    24.Goodman, R. E., "Introduction to rock mechanics," 2nd edition, John Wiley & Sons, New York (1989).
    25.Griffith, A. A., "The phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society. London A221, Vol. 221, p 163-197 (1921).
    26.ISRM, "Rock Characterization Testing and Monitoring , Suggested Methods , Dergamon , " Oxford (1981).
    27.Lajtai, E.Z., "Mechanics of second order faults and tension gashes," The Geological Society of America. Vol. 80, pp. 2253-2272 (1969).
    28.Lin, S. T., Hsieh, C. T. and Hu, C. P., "Two Holographic Blind-hole methods for measuring residual stress." Exp. Mech., Vol. 34, p 141-147 (1994).
    29. Maji, A. K., "Acoustic emissions from reinforced concrete," Experimental Mechanics, Vol. 34, No. 4, pp. 379-388 (1994).
    30. Maji, A. K., Wang., J. L, and Lovato, J., "Electronic speckle pattern interferometry for fracture mechanics testing," Experimental Techniques, Vol.15, No. 3, pp.19-23 (1991).
    31. Mohr, O., "Welche umstande bedingen die elastizitatsgrenze und den bruch eines materiales," Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, pp.1524-1530 (1900).
    32. Moore, A. J. and Tyrer, J. R., "An electronic speckle pattern interferometry for complete in-plane displacement measurement," Measurement Science and Technology, Vol. 1, pp. 1024-1030 (1982).
    33.Patton. B. and Gangal, M., "Multiple modes of shear failure in rock," Proc. 1st. Intl. Cong. Rock Mechanics , Libon, Vol.1.pp.509-513. (1966).
    34. Resenblad, J. L., "Development of a rocklike material," Proceedings of the 10th Symposium on Rock Mechanics. pp. 331-361 (1968).
    35.Stimpson B., "Modeling for engineering rock mechanics," International Journal of Rock Mechanics and Mining Sciences. Vol.7. pp 77-121 (1970).
    36.Wawersik,W.R. "Detailed analysis of rock failure in laboratory compression test," Ph.D. Thesis , Department of Civil & Mineral Engineering , University of Minnesota , Minneaplois , Minnesota. (1968)
    37.Yang, Z. Y., "Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles," Tamkang Journal of Science and Engineering, Vol. 1, No. 1, pp. 14-19 (1998).

    QR CODE