簡易檢索 / 詳目顯示

研究生: Dwi Prasetya
Dwi - Prasetya
論文名稱: Shear Behavior of Reinforced Concrete Columns with High Strength Steel and Concrete under High Axial Load
Shear Behavior of Reinforced Concrete Columns with High Strength Steel and Concrete under High Axial Load
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 黃世建
Shyh-Jiann Hwang
李宏仁
Hung-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 165
中文關鍵詞: columnhigh strength concretehigh strength steelcyclic loadingaxial compressive loadconcrete shear strength
外文關鍵詞: column, high strength concrete, high strength steel, cyclic loading, axial compressive load, concrete shear strength
相關次數: 點閱:292下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Eight columns were tested under axial compression load and cyclic loading. All specimens were designed for shear failure using high strength concrete and high strength steel as its reinforcement. The parameters of these columns were compressive strength of concrete (70 MPa and 100 MPa), transverse reinforcement spacing (hoop ratio ??=0.14 %, ??=0.25 %), and axial load ratio (30% - 40% ??′∙??). Eight specimens from previous studies were included to investigate the shear capacities of high-strength concrete columns under axial compression load effect. ACI 08-318 adopt 45o of the critical crack angle in its calculation makes the conservative estimation. AASHTO LRFD 2007 considers the axial load effect to predict the crack angle and perform conservative enough to predict the crack angle. The test results compared with the ultimate shear strength and concrete shear strength predict by several codes. The test results show that the maximum strength of columns appears before the yielding of stirrups. The stress of the transverse reinforcement at maximum lateral strength should be limited. The axial compression stress affect the concrete shear stress in low axial compressive stress and the effect was not clear in high axial compressive stress.


Eight columns were tested under axial compression load and cyclic loading. All specimens were designed for shear failure using high strength concrete and high strength steel as its reinforcement. The parameters of these columns were compressive strength of concrete (70 MPa and 100 MPa), transverse reinforcement spacing (hoop ratio ??=0.14 %, ??=0.25 %), and axial load ratio (30% - 40% ??′∙??). Eight specimens from previous studies were included to investigate the shear capacities of high-strength concrete columns under axial compression load effect. ACI 08-318 adopt 45o of the critical crack angle in its calculation makes the conservative estimation. AASHTO LRFD 2007 considers the axial load effect to predict the crack angle and perform conservative enough to predict the crack angle. The test results compared with the ultimate shear strength and concrete shear strength predict by several codes. The test results show that the maximum strength of columns appears before the yielding of stirrups. The stress of the transverse reinforcement at maximum lateral strength should be limited. The axial compression stress affect the concrete shear stress in low axial compressive stress and the effect was not clear in high axial compressive stress.

ABSTRACT ................................ ................................ ................................ .................. i ACKNOWLEDGEMENT ................................ ................................ ........................... ii TABLE OF CONTENTS ................................ ................................ ............................ iii LIST OF TABLES ................................ ................................ ................................ ...... vi TABLE OF FIGURES ................................ ................................ .............................. viii 1. INTRODUCTION ................................ ................................ ............................... 1 1.1 Background ................................ ................................ ................................ .. 1 1.2 Problem Definition ................................ ................................ ...................... 2 1.3 Objective and Scope ................................ ................................ .................... 3 1.4 Organization ................................ ................................ ................................ . 4 2. PREVIOUS RESEARCH AND LITERATURE REVIEW ................................ . 5 2.1 Previous Research ................................ ................................ ........................ 5 2.1.1 N. Sakaguchi, et.al. ................................ ................................ .............. 5 2.1.2 Hiroshi Kuramoto and Koichi Minami ................................ ................ 9 2.1.3 Makoto Maruta ................................ ................................ .................. 12 2.1.4 F. Watanabe and T. Kabeyasawa ................................ ........................ 16 2.2 Literature Review ................................ ................................ ...................... 20 2.2.1 ACI 318M-08 ................................ ................................ ..................... 20 2.2.2 AASHTO LRFD (2007) ................................ ................................ .... 22 2.2.3 Japanese Equation ................................ ................................ .............. 25 3. SPECIMENS DESIGN AND TEST PROGRAM ................................ ............. 31 3.1 Specimen Design ................................ ................................ ....................... 31 3.2 Materials ................................ ................................ ................................ .... 31 iv 3.2.1. Longitudinal Reinforcement ................................ .............................. 32 3.2.1 Transverse Reinforcement ................................ ................................ . 32 3.2.2 Concrete ................................ ................................ ............................. 33 3.3 Construction of Specimens ................................ ................................ ........ 33 3.4 Instrumentations and Measurements of Load, Strain and Displacements . 38 3.5 Test Set Up ................................ ................................ ................................ . 41 3.6 Applied Loading ................................ ................................ ........................ 43 4. TEST RESULTS AND OBSERVATION ................................ ........................... 44 4.1 Test of the Specimens ................................ ................................ ................ 44 4.1.1 Column C Series ................................ ................................ ................ 44 4.1.2 Column D Series ................................ ................................ ................ 55 4.2 Test Result Comparison ................................ ................................ ............. 65 4.3 Cut Through Aggregate................................ ................................ .............. 69 4.4 Buckling of Longitudinal Reinforcement ................................ .................. 70 5. COMPARISON OF TEST RESULTS AND DISCUSSION ............................. 71 5.1 Hysteretic Loop and Envelope ................................ ................................ ... 71 5.2 Critical Crack Angle and Secant Lateral Stiffness ................................ ..... 77 5.3 Maximum Stress of Transversal Reinforcement ................................ ........ 79 5.4 Comparison of Test Result and Shear Prediction ................................ ...... 81 5.5 Concrete Shear Stress due to Axial Compression Stress Effect ................ 84 6. CONCLUSION AND FUTURE WORK................................ ........................... 87 6.1 Conclusion ................................ ................................ ................................ . 87 6.2 Future Work ................................ ................................ ............................... 88 REFERENCES ................................ ................................ ................................ .......... 89 APPENDIX A SPECIMEN DESIGN DRAWING ................................ .................. - 1 - v APPENDIX B FRICTION AND AXIAL FORCE ................................ ................ - 9 - APPENDIX C STRAIN READING ................................ ................................ ...... - 18 - APPENDIX D SHEAR STRAIN AND CURVATURE ................................ ......... - 59 -

[1] Aoyama, H., "Design of Modern Highrise Reinforced Concrete Structures," Imperial College Press. 2001.
[2] ACI Committee 363, "363R-92: Report on High-Strength Concrete (ACI 363R-10)," American Concrete Institute. 1992.
[3] ACI Committee 441, “High-Strength Concrete Columns : State of the Art,” ACI Structural Journal, May-June, 1997.
[4] Sakaguchi, N., Yamanobe, K., Kitada, Y., Kawachi, T., Koda, S., “Shear Strength of High-Strength Concrete Members,” ACI Symposium Publication, SP-121, November 1990, pp. 155-178.
[5] Kurniawan, D.P., “Shear Behavior of Reinforced Concrete Columns with High Strength Steel and Concrete under Low Axial Load,” Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology. 2011.
[6] Handika, N., “Shear Behavior of Tied and Multi-Spiral Columns with High Strength Steel and Concrete under Low Axial Load,” Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology. 2012.
[7] Kuramoto, H., Minami, K., “Experiments on the shear strength of ultra-high strength reinforced concrete colums,” 10th World Conference Earthquake Engineering, Roterdam, 1992.
[8] Maruta, M., "Shear Capacity of Reinforced Concrete Column Using High Strength Concrete," Invited Lecture in the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo. October 27-29, 2008.
[9] Watanabe, F., Kabeyasawa T., “Shear Strength of RC Members with High-Strength Concrete,” ACI Symposium Publication, SP-176, October 1998, pp. 379-396.
[10] ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08)," American Concrete Institute, Farmington Hills, MI. 2008.
90
[11] AASHTO LRFD, "Bridge Design Specifications 4th edition," American Association of State Highway and Transportation Officials. Washington, DC. 2007.
[12] AIJ 1990, "Design Guidelines for Earthquake Resistant Reinforced Concrete Building Based on Ultimate Strength Concept ", Architectural Institute of Japan. 1990.
[13] AIJ 1999, "Design Guidelines for Earthquake Resistant Reinforced Concrete Building Based on Inelastic Displacement Concept," Architectural Institute of Japan. 1999
[14] Chen, J.C., Lin, T.H., Chen, P.C., Lin, K.C., Tsai, K.C., “Advanced Seismic Testing Using the Multi-Axial Testing System (MATS) in NCREE,” 3rd International Conference on Advances in Experimental Structural Engineering, San Francisco, Oktober 2009.
[15] Park, R., Paulay, T., "Reinforced Concrete Structures," Departement of Civil Engineering, University of Canterbury, Christchurch, New Zealand. 1974.
[16] Bentz, E.C., Vecchio, F.J., Collins, M.P., “Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements,” ACI Structural Journal, V. 103, No. 4, July-August 2006, pp. 614-624.
[17] Collins, M.P., Bentz, E.C., Sherwood, E.G., “Where is Shear Reinforcement Required? Review of Research Result and Design Procedures,” ACI Structural Journal, V.15, No.5, September-October 2008. pp. 590-600.
[18] Collins, M.P., Mitchell, D., Adebar, A., Vecchio, F.J., “A General Shear Design Method,” ACI Structural Journal, V.93, No.1, January-Febuary 1996. pp. 36-45.
[19] Linbeck, L.E., “Behavior of Reinforced Concrete Columns Subjected to Lateral and Axial Load Reversals”, Master thesis, University of Texas at Austin, 1987.
[20] Gupta, P.R., Collins, M.P., “Evaluation of Shear Design Procedures for Reinforced Concrete Member under Axial Compression,” ACI Structural Journal, V. 98, No. 4, July-August 2001, pp. 537-547.
91
[21] ACI Committee 326, "Shear and Diagonal Tension," American Concrete Institute. 1962, pp. 29-83.
[22] Vecchio, F.J., Collins, M.P., “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Structural Journal, V. 83, No. 2, March-April 1986, pp. 219-231.
[23] Razvi, S., Saatcioglu, M., "Confinement Model for High-Strength Concrete," ASCE Journal of Structural Engineering, V. 125, No. 3. 1999, pp. 281-289.
[24] Xiao, Y., Martirossyan, A., "Seismic Performance of High-Strength Concrete Columns," ASCE Journal of Structural Engineering, V. 124, No. 3. 1998, pp. 241-251.
[25] Priestley, M.J.N., Verma, R., Xiao, Y., "Sesimic Shear Strength of Reinforced Concrete Columns," ASCE Journal of Structural Engineering, V. 120, No. 8. 1994, pp. 2310-2329.
[26] Caldarone MA, "High-Strength Concrete - A Practical Guide," Taylor & Francis. 2008.

QR CODE