簡易檢索 / 詳目顯示

研究生: 許正良
Cheng-Liang Hsu
論文名稱: 應用導線重排與空間配置技術之低功率容錯匯流排
Wire Permutation and Spacing for Low Power Fault-Tolerant Bus
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 曹孝櫟
Shiao-Li Tsao
許孟超
Mon-Chau Shie
楊佳玲
Chia-Lin Yang
陳伯奇
Poki Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 低功率(low power耦合電容(coupling capacitance)可靠度(reliability)容錯(fault-tolerant)
外文關鍵詞: coupling capacitanc
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術進入到VDSM (very deep sub-micro),匯流排上的導線間距也隨之縮小,造成匯流排的耦合電容快速增長,所以對晶片上訊號傳送的可靠度與功率的消耗都有明顯的影響,因此設計出一個低功率消耗及高可靠度的匯流排確實有其需要,為此本論文提出一個藉由導線重排及額外空間配置的方法來建立一個低功率容錯匯流排。
    本論文所提出的低功率容錯匯流排架構是以漢明碼的編碼為基礎,利用圖形理論在一多項式時間內,根據已知的資料流對導線作重排及非均勻空間的配置,藉此來降低容錯匯流排之間耦合電容的影響,另一方面此方法並不需要額外的編碼電路,因此並不會增加原本已具有編/解碼電路容錯匯流排的負擔而造成訊號的延遲。根據實驗結果的顯示本論文所提出的架構,當額外空間為20×dmin時最高可減少43%的功率消耗,而最少也可達到30%。


    As technology scales to the very deep submicron (VDSM) dimensions, the coupling capacitances between adjacent bus wire grow rapidly, and have a significant impact on power consumption and signal integrity issue of whole chip. Thus, it is important to design fault-tolerant buses that dissipate less power and raise reliability without sacrificing performance.
    In this paper, we address the problem of using Hamming single error correcting code by simultaneously optimizing wire permutation and spacing. We propose an efficient algorithm that use graph theory for this optimization problem in a polynomial time. Unlike previous study, our approach using in high bandwidth fault-tolerant buses can efficient reduce the coupling capacitances without more additional space.
    For our experiments, we used instruction bus traces obtained from 12 SPEC2000 benchmark programs. The results show that our approach can save energy up to 43% for the best case, and 30% for the worst with 20×dmin additional width.

    中文摘要 I 英文摘要 II 致謝 III 目 次 IV 圖表索引 V 第一章 簡介 1 1.1 前言與實驗動機 1 1.2 論文架構 1 第二章 背景及架構 3 2.1 耦合電容 3 2.2 低功率之單一錯誤修正碼 5 2.2.1 漢明碼(Hamming code approach) 6 2.2.2 雙軌跡碼(Dual-rail code approach) 10 2.2.3 漢明碼與雙軌跡碼之功率比較 15 2.3 匯流排模型與功率消耗特性 15 第三章 導線重排與空間配置方法 20 3.1 導線重排(permutation) 20 3.1.1 排列方法一(greed search) 23 3.1.2 排列方法二(DFS ,depth-first search) 25 3.1.3 排列方法三(preorder search) 28 3.1.4 排列方法之演算法比較 29 3.2 空間配置(spacing) 31 3.3 結合導線排列與空間配置 32 3.4 利用基因演算法來同時考慮導線的反向、重排及空間配置 34 3.5 低功率雙軌跡碼(Dual-rail code)容錯匯流排 36 3.6 匯流排分割 38 第四章 實驗流程與結果 41 4.1 實驗環境 41 4.2 實驗流程 43 4.3 實驗結果 44 4.3.1 評估利用圖形理論所建立的容錯匯流排之功率效能 44 4.3.2 評估利用基因演算法所建立的容錯匯流排之功率效能 47 4.3.3 評估低功率雙軌跡碼容錯匯流排於多位元組時的功率效能 48 4.3.4 評估利用匯流排分割所建立的容錯匯流排之功率效能 51 第五章 結論 54 參考文獻 55

    [1]K. Aingaran, F. Klass, C. M. Kim, C. Amir, J. Mitra, E. You, J. Mohd, and S. K. Dong. “Coupling Noise Analysis for VLSI and ULSI Circuits”. IEEE ISQED 2000, pages 485–489, March 2000.
    [2]L. Anghel and M. Nicolaidis. “Cost Reduction and Evaluation of Temporary Faults Detecting Technique”. DATE 2000, pages 591–598, March 2000.
    [3]A. Krstic, Y. M. Jiang, and K. T. Cheng. “Pattern Generation for Delay Testing and Dynamic Timing Analysis Considering Power-Supply Noise Effects”. IEEE Transactions on CAD, 20(3):416–425, March 2001.
    [4]K. L. Shepard and V. Narayanan. “Noise in Deep Submicron Digital Design”. IEEE/ACM ICCAD-96, pages 524– 531, November 1996.
    [5]J. A. Davis et al. “Interconnect Limits on Gigascale Integration (GSI) in the 21st Century”. Proceedings of the IEEE, 89(3):305–324, March 2001.
    [6 ]D. Liu et al. “Power Consumption Estimation in CMOS VLSI Chips”. IEEE Journal of Solid-State Circuits, 29:663– 670, June 1994.
    [7]V. Raghunathan, M. B. Srivastava, and R. K. Gupta, “A survey of techniques for energy efficient on-chip communication,” in in Proceedings DAC-2003, pp. 900–905, 2003.
    [8]M. J. Irwin, “Tutorial: Low power design for soc.” International Conference on ASICSoC, month =.
    [9]Magma Design Automation Inc, “Deep-Submicron Signal Integrity White Paper,”
    [10]P. P. Sotiriadis and A. P. Chandrakasan, “Bus Energy Reduction by Transition Pattern Coding Using a Detailed Deep Submcrometer Bus Model,” IEEE Trans. on Circuits Syst. I, vol. 50, pp. 1280–1295, Oct. 2003.
    [11]L. Beninni, G.. D. Micheli, E. Macci, D. Sciuto, and C. Silvano, "Address Bus Encoding techniques for system-level power optimization," in Proceeding of EuroDAC-97, pp. 861-867, Nov. 1997.
    [12]S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A Coding Framework for Low-Power Address and Data Busses,” IEEE Trans. on VLSI Systems, June 1998.
    [13]D. Sylvester and C. Hu, “Analytical Modeling and Characterization of Deep-Submicrometer Interconnect,” Proceedings of the IEEE, vol. 89, pp. 634–664, May 2001.
    [14]Y. Shin, S. Chae, and K. Choi, “Partil Bus-Invert Coding for Power Optimization of Application-Specific Systems,” IEEE Trans. on VLSI Systems, vol. 9, pp. 377–383, Apr. 2001.
    [15]W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano, “Power optimization of system-level address buses based on software profiling,” in International Workshop on HardwareSoftware Codesign (CODES), pp. 29–33, May 2000.
    [16]L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Synthesis of Low-Overhead Interfaces for Power-Efficient Communication over Wide Bues,” in Proceedings DAC-1999, 1999.
    [17]P. P. Sotiriadis and A. Chandrakasan, “Low Power Bus Coding Techniques Considering Inter-wire Capacitances,” in in Proceeding of IEEE Conf. on Custom Integrated Circuits (CICC ’00), pp. 507–510, 2000.
    [18]J. Henkel and H. Lekatsas, “A2BC: Adaptive Address Bus Coding for Low Power Deep Sub-Micro Designs,” in in Proceeding of Design Automation Conference (DAC), pp. 744–749, Jun. 2001.
    [19]K.-W. Kim, K.-H. Baek, N. R. Shanbhag, C. L. Liu, and S. Kang, “Coupling-driven signal encoding scheme for low-power interfacedesign,” in in Proceedings ICCAD-2000, pp. 318–321, Nov. 2000.
    [20]Y. Zhang, J. Lach, K. Skadron, and M. R. Stan, “Odd even bus invert with two-phase transfer for buses with coupling,” in in Proceeding of ISLPED ’02, pp. 80–83, Aug. 2002.
    [21]Y. Shin and T. Sakurai, “Coupling-driven bus design for low-power application-specific systems,” in in Proceeding of Design Automation Conference (DAC), pp. 18–22, Jun. 2001.
    [22]E. Naroska, S. Ruan, F. Lai, U. Schwiegelshohn, and L. Liu, “On optimizing power and crosstalk for bus coupling capacitance using genetic algorithms,” in in Proceedings of the 2003 IEEE International Symposium on Circuits and Systems (ISCAS 2003), vol. 5, pp. V277– V280, May 2003.
    [23]C.-G. Lyuh, T. Kim, and K.-W. Kim, “Coupling -aware high-level interconnect synthesis,” IEEE Trans. Computer-Aided Design of ICS, vol. 23, pp. 157–164, Jan. 2004.
    [24]L. Macchiarulo, E. Macii, and M. Poncino, “Wire Placement for Crosstalk Energy Minimization in Address Bus,” in in Proceedings DATE-2002, pp. 158–162, 2002.
    [25]Rossi, D.; van Dijk, V.E.S.; Kleihorst, R.P.; Nieuwland, A.H.; Metra, C. ”Coding scheme for low energy consumption fault-tolerant bus” IEEE International On-Line Testing Workshop, 2002. Proceedings of the Eighth , 8-10 July 2002 Pages:8 – 12
    [26]L. G. Tallini and B. Bose. Theory and Design of Adjacent Asymmetric Error Masking Codes. IEEE Trans. on Computers, May 1998.
    [27]P. K. Lala. Self-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann, 2001.
    [28]D. K. Pradhan. Fault Tolerant Computing: Theory and Techniques. Prentice Hall, Englewood Cliffs, New Jersey, 1986.
    [29]T. R. N. Rao and E. Fujiwara. Error Control Coding for Computer Systems. Prentice Hall, Englewood Cliffs, New Jersey, 1989.
    [30]Chun-Gi Lyuh, Taewhan Kim, and Ki-Wook Kim”Coupling-Aware High-Level Interconnect Synthesis” IEEE Transactions on Volume 23, Issue 1, Jan. 2004 Page(s):157 – 164.
    [31]Gary Chartrand and Ortrud R. Oellermann: Applied and Algorithmic Graph Theory. International Editions 2000
    [32]Jiang, I.H.-R.; Yao-Wen Chang; Jing-Yang Jou”Crosstalk-driven interconnect optimization by simultaneous gate and wire sizing” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 19, Issue 9, Sept. 2000 Page(s):999 - 1010
    [33]M. Keim, N.Drechsler, and B.Becker, “Combining gas and symbolic methods for high quality tests of sequential circuits,” in proceedings of the ASP-DAC’99, vol. 1, pp. 315-318, 1999.
    [34]S.Chattopadhyay, “Low power state assignment and flipflop selection for finite state machine synthesis –a genetic algorithmic approach,” IEE Proceedings Computers and Digital Techniques, vol. 148, pp. 147-151,July/Sep. 2001.
    [35]M. Hsiao, E.Rudnick, and J.Patel, “Alternating strategies for sequential circuit atpg,” in Proceedings European Design & Test Conf. 1996, pp. 368-374, 1996
    [36]P. Mazumder and E.Rudnick, “Genetic Algorithms for VLSI Design,”Layout and Test Automation. Prentice Hall, Dec. 1998.
    [37]D. Burger and T.M. Austin, "The SimpleScalar Tool Set, Version 2.0." http://www.simplescalar.com, 1997.
    [38]M. Kamon, and et al, “Fasthenry: A multiple-acceler-ated 3-d inductance extraction program," IEEE Trans. on MTT, pages 1750-1758,Sep 1994.
    [39]K. Nabors and J. White, ”Fastcap: A multiple accelerated 3-d capacitance extraction program," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, pages 1447-1459, Nov 1991.

    QR CODE