簡易檢索 / 詳目顯示

研究生: Erzanda Nugraha Ridhwan Amir
Erzanda Nugraha Ridhwan Amir
論文名稱: 信用交易下的可持續供應鏈網路設計:一個穩健模糊規劃方法
Designing a Sustainable Supply Chain Network under Trade-Credit: A Robust Fuzzy Programming Approach
指導教授: 曹譽鐘
Yu-Chung Tsao
口試委員: 林久翔
Chiu-Hsiang Lin
郭財吉
Tsai-Chi Kuo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 77
中文關鍵詞: 永續供應鏈網絡信用交易不確定性穩健模糊規劃
外文關鍵詞: Sustainable Supply Chain Network, Trade-Credit, Uncertainty, Robust Fuzzy Programming
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統供應鏈網路主要是在不確定的商業環境下考量經濟模型以最佳化供應鏈設計。社會迫切需要設計更可永續的供應鏈網路,在合理的成本之下減少供應鏈活動產生的碳排放。本研究解決了永續供應鏈網絡設計問題,其中考慮了碳交易政策和供應商的信用交易,以最佳化實體市場和碳市場中的總供應鏈利潤。這個問題不僅需要決定設施的數量、位置和容量,網絡中實體之間的產品流,產品的銷售價格,還要決定在不同信用交易方案下供應商的最佳經濟訂單數量。基於整合穩健最佳化和模糊規劃的穩健模糊規劃模型被用於解決需求和相關成本之不確定性。本研究以台灣一家鋼鐵公司進行案例分析,以證明該模型的有效性和效率。結果表明,與基於情景之穩健隨機規劃相比,該模型將總供應鏈利潤(包括來自實體市場和碳市場的利潤)提高了約1%,並將計算時間減少了3.6倍。我們的研究也顯示,供應鏈網絡的最佳配置對不同情景的碳交易具敏感性,而供應商的選擇則受信用交易政策的影響。


    Classical supply chain networks mainly concern on the economic optimization model by determining the optimal supply chain configuration under the chaotic business environment. There has been an immense pressure from the society to design more sustainable supply chain networks for reducing the carbon emissions generated from supply chain activities with reasonable cost. This study addresses the sustainable supply chain network design problem considering carbon trading policy and trade-credit from suppliers to optimize the total supply chain profit in both physical market and carbon market. The problem entails decisions regarding not only the number, location, and capacity of facilities, the product flow among entities in the network, and the product-selling price but also the optimal economic order quantity to suppliers under different trade-credit schemes. A robust fuzzy programming model based on the integration of robust optimization and fuzzy programming is applied to tackle the uncertainties in demand and relevant costs. A case study in Taiwan steel firm was conducted to demonstrate the efficacy and efficiency of the proposed model. Results show that the proposed model improves the total supply chain profit, including the profits from physical and carbon markets, by approximately 1 percent and reduces the computational time by 3.6 times compared to the scenario-based robust stochastic programing. Our findings also show that the optimal configuration of supply chain network is sensitive to different scenario of carbon trade and selection of supplier is affected by the trade-credit policy.

    摘要 I ABSTRACT IV ACKNOWLEDGMENTS V CONTENT VI LIST OF FIGURES VIII LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objective 6 1.3 Research Organization 7 CHAPTER 2 LITERATURE REVIEW 10 2.1 Sustainable Supply Chain Network Design 10 2.2 Carbon Trade 11 2.3 Trade-Credit 12 2.4 Uncertainty Modeling in Supply Chain Network Design 13 CHAPTER 3 MODEL FORMULATION 17 3.1 Problem Description 17 3.1.1 Indices 20 3.1.2 Parameters 21 3.1.3 Decision Variables 22 3.2 Mathematical Model Formulation 23 3.2.3 Auxiliary Variable for Linearization of Model 27 3.3 Uncertainty Modeling Approach 28 3.3.1 Chance Constrained Fuzzy Programming (CCFP) Model 28 3.3.2 Robust Fuzzy Programming (RFP) Model 32 CHAPTER 4 NUMERICAL EXPERIMENTS 35 4.1 Numerical Illustration 35 4.2 Result of SSCN Related Decisions 37 4.3 Robustness Analysis 40 4.4 Trade-Credit Analysis 43 4.4 Evaluation of Model Performance 45 CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 48 5.1 Conclusion 48 5.2 Future Research 49 APPENDIX 50 APPENDIX A 50 APPENDIX B 51 APPENDIX C 52 APPENDIX D 53 APPENDIX E 54 APPENDIX F 55 REFERENCES 59

    Alavi, S. & Jabbarzadeh, A., 2018. Supply chain network design using trade credit and bank credit: A robust optimization model with real world application. Computers and Industrial Engineering 125, pp. 69-86.
    Benjaafar, S., Li, Y. & Daskin, M., 2013. Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering 10(1), pp. 99-116.
    Brandenburg, M., Govindan, K., Sarkis, J. & Seuring, S., 2014. Quantitative models for sustainable supply chain management: Development and directions. European Journal of Operational Research 233(2), pp. 299-312.
    Chaabane, A., Ramudhin, A. & Paquet, M., 2012. Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics 135(1), pp. 37-49 .
    Colicchia, C., Creazza, A., Dallari, F. & Melacini, M., 2016. Eco-efficient supply chain networks: Development of a design framework and application to a real case study. Production Planning and Control 27(3), pp. 157-168.
    Eskandarpour, M., Dejax, P., Miemczyk, J. & Péton, O., 2015. Sustainable supply chain network design: An optimization-oriented review. Omega (United Kingdom) 54, pp. 11-32.
    Fahimnia, B., Sarkis, J., Choudary, A. & Eshragh, A., 2015. Tactical supply chain planning under a carbon tax policy scheme: A case study. International Journal of Production Economics 164, pp. 206-215.
    Fazli-Khalaf, M., Khalilpourazari, S. & Mohammadi, M., 2019. Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Annals of Operations Research 283, pp. 1079-1109.
    Feng, L. & Chan, Y.-L., 2019. Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits. European Journal of Operational Research 272(3), pp. 905-913.
    Giri, B., Chakraborty, A. & Maiti, T., 2016. Trade credit competition between two manufacturers in a two-echelon supply chain under credit-linked retail price and market demand. International Journal of Systems Science: Operations and Logistics 3(2), pp. 102-113.
    Govindan, K., Darbari, J., Agarwal, V. & Jha, P., 2017a. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network. Journal of Cleaner Production 165, pp. 1598-1619.
    Govindan, K. & Fattahi, M., 2017. Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics 183, pp. 680-699.
    Govindan, K., Fattahi, M. & Keyvanshokooh, E., 2017. Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research 263(1), Volume 263(1), pp. 108-141.
    Goyal, S., 1985. Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society 36(4), Volume 36(4), pp. 335-338.
    Haddadsisakht, A. & Ryan, S., 2018. Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax. International Journal of Production Economics 195, pp. 118-131.
    Hasani, A. & Khosrojerdi, A., 2016. Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review 87, pp. 20-52.
    Heydari, J., Rastegar, M. & Glock, C., 2017. A two-level delay in payments contract for supply chain coordination: The case of credit-dependent demand. International Journal of Production Economics 191, pp. 26-36.
    Hoen, K., Tan, T., Fransoo, J. & Van Houtum, G., 2014. Effect of carbon emission regulations on transport mode selection under stochastic demand. Flexible Services and Manufacturing Journal 26(1-2), pp. 170-195.
    Intergovernmental Panel on Climate Change, 2006. Emission Factor Database. [Online]
    Available at: https://www.ipcc-nggip.iges.or.jp/EFDB/main.php
    [Accessed May 2020].
    Inuiguchi, M. & Ramík, J., 2000. Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111(1), Volume 111(1), pp. 3-28.
    Jonkman, J., Kanellopoulus, A. & Bloemhof, J., 2019. Designing an eco-efficient biomass-based supply chain using a multi-actor optimisation model. Journal of Cleaner Production 210, pp. 1065-1075.
    Kouvelis, P. & Zhao, W., 2012. Financing the newsvendor: Supplier vs. bank, and the structure of optimal trade credit contracts. Operations Research 60(3), pp. 566-580.
    Li, R., Liu, Y., Teng, J.-T. & Tsao, Y.-C., 2019. Optimal pricing, lot-sizing and backordering decisions when a seller demands an advance-cash-credit payment scheme. European Journal of Operational Research 278(1), pp. 283-295.
    Liu, B. & Iwamura, K., 1998. Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems 94(2), Volume 94(2), pp. 227-237.
    Martí, J., Tancrez, J.-S. & Seifert, R., 2015. Carbon footprint and responsiveness trade-offs in supply chain network design. International Journal of Production Economics 166, pp. 129-142.
    Melo, M., Nickel, S. & Saldanha-da-Gama, F., 2009. Facility location and supply chain management - A review. European Journal of Operational Research 196(2), pp. 401-412.
    Mohajeri, A. & Fallah, M., 2016. A carbon footprint-based closed-loop supply chain model under uncertainty with risk analysis: A case study. Transportation Research Part D: Transport and Environment 48, pp. 425-450.
    Mohammed, A. & Wang, Q., 2017. The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics 184, pp. 47-58.
    Mohammed, F., Selim, S., Hassan, A. & Syed, M., 2017. Multi-period planning of closed-loop supply chain with carbon policies under uncertainty. Transportation Research Part D: Transport and Environment 51, pp. 146-172.
    Ouhimmou, M., Nourelfath, M., Bouchard, M. & Bricha, N., 2019. Design of robust distribution network under demand uncertainty: A case study in the pulp and paper. International Journal of Production Economics 218, pp. 96-105.
    Ouyang, L.-Y., Ho, C.-H., Su, C.-H. & Yang, C.-T., 2015. An integrated inventory model with capacity constraint and order-size dependent trade credit. Computers and Industrial Engineering 84, pp. 133-143.
    Petersen, M. & Rajan, R., 1997. Trade credit: Theories and evidence. Review of Financial Studies 10(3), pp. 661-691.
    Pishvaee, M. & Fazli Khalaf, M., 2016. Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling 40(1), Volume 40(1), pp. 407-418.
    Pishvaee, M. & Razmi, J., 2012. Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling 36(8), pp. 3433-3446.
    Pishvaee, M., Razmi, J. & Torabi, S., 2012. Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems 206, pp. 1-20.
    Rabbani, M., Hoseeini-Mokhallesun, S., Ordibazar, A. & Farrokih-Asl, H., 2020. A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design. International Journal of Systems Science: Operations and Logistics 7(1), pp. 60-75.
    Ramudhin, A., Chaabane, A. & Paquet, M., 2010. Carbon market sensitive sustainable supply chain network design. International Journal of Management Science and Engineering Management 5(1), pp. 30-38.
    Rezaee, A., Dehghanian, F., Fahimnia, B. & Beamon, B., 2015. Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research 250(2), pp. 463-485.
    Seifert, D., Seifert, R. & Protopappa-Sieke, M., 2013. A review of trade credit literature: Opportunities for research in operations. European Journal of Operational Research 231(2), pp. 245-256.
    Shaw, K., Irfan, M., Shankar, R. & Yadav, S., 2016. Low carbon chance constrained supply chain network design problem: a Benders decomposition based approach. Computers and Industrial Engineering 98, pp. 483-497.
    Simchi-Levi, D., Kaminsky, P. & Simchi-Levi, E., 2003. Designing and managing the supply chain: Concepts, strategies, and case studies. Boston: McGraw-Hill/Irwin.
    Sims, R. et al., 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
    Soleimani, H., Govindan, K., Saghafi, H. & Jafari, H., 2017. Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Computers and Industrial Engineering 109, pp. 191-203.
    Sundarakani, B. et al., 2010. Modeling carbon footprints across the supply chain. International Journal of Production Economics 128(1), pp. 43-50.
    Talaei, M. et al., 2016. A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: A numerical illustration in electronics industry. Journal of Cleaner Production 113, pp. 662-673.
    Trochu, J., Chabaane, A. & Ouhimmou, M., 2020. A carbon-constrained stochastic model for eco-efficient reverse logistics network design under environmental regulations in the CRD industry. Journal of Cleaner Production 245, p. 118818.
    Tsao, Y.-C., 2016. Design of a carbon-efficient supply-chain network under trade credits. International Journal of Systems Science: Operations and Logistics 2(3), pp. 177-186.
    Tsao, Y.-C. & Linh, V., 2016. Supply Chain Network Designs Developed for Deteriorating Items Under Conditions of Trade Credit and Partial Backordering. Networks and Spatial Economics 16(3), pp. 933-956.
    Tsao, Y.-C. & Thanh, V.-V., 2020. A multi-objective fuzzy robust optimization approach for designing sustainable and reliable power systems under uncertainty. Applied Soft Computing Journal 92, p. 106317.
    Tsao, Y.-C., Thanh, V.-V., Lu, J.-C. & Yu, V., 2018. Designing sustainable supply chain networks under uncertain environments: Fuzzy multi-objective programming. Journal of Cleaner Production 174, pp. 1550-1565.
    World Bank, 2020. State and Trends of Carbon Pricing 2020, Washington, DC: World Bank.
    Xu, J. & Zhou, X., 2013. Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. Information Sciences 238, pp. 75-95.
    Zahiri, B., Jula, P. & Tavakkoli-Moghaddam, R., 2018. Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences 423, pp. 257-283.
    Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M. & Jula, P., 2014. Multi objective design of an organ transplant network under uncertainty. Transportation Research Part E: Logistics and Transportation Review 72, pp. 101-124.
    Zhong, Y., Shu, J., Xie, W. & Zhou, Y.-W., 2018. Optimal trade credit and replenishment policies for supply chain network design. Omega (United Kingdom) 81, pp. 26-37.

    無法下載圖示 全文公開日期 2025/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE