簡易檢索 / 詳目顯示

研究生: 林志豪
Chih-Hao Lin
論文名稱: 製備含奈米金屬粒子之電漿聚合正庚胺薄膜並應用於抗菌測試及化學鍍銅
Antibacterial Effects and Cu Electroless plating of Amine-Containing Plasma Thin Films Containing Metallic Nanoparticles
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
周秀慧
Shiu-Huey Chou
施志欣
Chih-Hsin Shih
莊怡哲
Yi-Je Juang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 電漿聚合含胺基薄膜奈米銀粒子抗菌測試無電鍍銅
外文關鍵詞: plasma polymerization, amine-containing films, silver nanoparticles, antibacterial test, Cu electroless plating
相關次數: 點閱:412下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用低壓電漿聚合技術製備含胺基之薄膜,並直接使金屬離子螯合於薄膜,進而還原成金屬奈米粒子;利用此種製程,可製備具抗菌效果的複合薄膜並可應用於化學鍍銅程序,省略敏化及活化步驟,直接將此高分子金屬複合薄膜作為化學鍍銅的材料。在製備電漿聚合正庚胺薄膜實驗中,本研究以橢圓偏光儀定量分析了薄膜厚度並得到在實驗參數(電漿聚合操作壓力:200 mTorr,使用功率: 40 W,前驅物加熱溫度: 40 ˚C)下的沉積速率約為4 nm/min;以ATR-FTIR分析薄膜表面的化學鍵結組成可以在沉積時間5分鐘至90分鐘下製備出之正庚胺薄膜皆具胺官能基訊號。
  在以硼氫化鈉以及熱還原兩種方法製備正庚胺@銀後,以掃描式電子顯微鏡可以觀察到電漿聚合正庚胺薄膜表面具有均勻分布的奈米銀粒。在以此二種還原方法製備之複合薄膜中皆可觀察到在電漿沉積時間較短的薄膜表面具有粒徑約50奈米之銀粒子;在電漿沉積較長的薄膜表面具有粒徑約20~30奈米之銀粒子。
  在光學密度式抗菌測試結果中,正庚胺@銀複合薄膜的抑菌能力明顯優於未處理之電漿聚合正庚胺薄膜。其中,使用以硼氫化鈉還原法製備之正庚胺@銀複合薄膜抑制大腸桿菌時抑制率可達70.1 %;抑制金黃色葡萄球菌之抑制率可達68.2 %;以熱還原法製備之正庚胺@銀複合薄膜抑制大腸桿菌時抑制率可達70.3 %;抑制金黃色葡萄球菌之抑制率可達28.2 %。
  在以正庚胺@銀複合薄膜作為化學鍍銅基材之實驗中,可以直接以複合薄膜作為以活化表面之基材並成功於表面製備出銅層,以四點探針分析銅層電學性質,可以得到與金屬銅非常相近之導電度;亦可以利用固體膜具製造出具有形狀排列之銅層。


In this study, a plasma polymerized thin film (pp-thin film) containing amine functionalities was reported to show antibacterial properties against the colonization of E. coli and S. aureus and also applied in copper electroless plating. In addition, the plasma polymers revaled the feasibility to integrate silver nanoparticles by directly reducing metal ions in two methods. The precursor utilized for plasma polymerization was heptylamine in order to generate amine-containing matrices. The subsequent immersion of the amine functionalized pp-thin films in metal salt solutions allowed the formation of amine-metal complexes Ag@HApp flims. The results obtained by SEM analyses revealed clearly that the existence of the spherical Ag particles on the pp-thin films associated closely to the thickness of the prepared pp-thin films , the reducing method, and the time period for immobilization. The results showed that the Ag@HApp films possessed 70.1 % and 68.2 % antibacterial ability against to E. coli and S. auresus, respectively. In addition, Ag@HApp can serve as the activated surface to do Cu electroless plating. The electrical properties of Cu layer were analyzed by four-point probe and showed that there are almost no differences between Cu layer and bulk Cu metal. Moreover, the polymeric film between Cu layers and substrate can be the adhesion promoter layer.

摘要 I 目錄 III 圖目錄 V 1-1 研究背景 1 1-2 研究目標 1 第二章 文獻回顧 3 2-1 電漿介紹 3 2-1-1 電漿定義 3 2-1-2 電漿薄膜沉積 4 2-1-3 低壓電漿聚合薄膜 4 2-1-4 電漿聚合理論 5 2-1-5 電漿聚合參數 9 2-1-6 電漿源種類 12 2-2 含胺官能基薄膜 18 2-2-1 非利用電漿聚合之含胺基薄膜 18 2-2-2 利用電漿聚合製備之含胺基薄膜 23 2-3 奈米銀例子的合成方法及其應用 28 2-3-1 以硼氫化鈉還原奈米銀粒子 29 2-3-2 以熱還原奈米銀粒子 31 2-4 化學鍍銅方法 33 第三章 實驗方法與儀器原理 41 3-1實驗藥品 41 3-1-1電漿聚合正庚胺薄膜 41 3-1-2合成奈米銀粒子 41 3-1-3抗菌測試(E. coli, S. aureus) 42 3-1-4化學鍍銅 42 3-2 實驗方法 43 3-2-1 電漿聚合正庚胺薄膜 43 3-2-2 製備正庚胺@銀(Ag@HApp)複合薄膜 46 3-2-3 正庚胺@銀複合薄膜之抗菌測試 47 3-2-4 化學鍍銅 48 3-3分析儀器原理及方法 49 3-3-1 X-射線光電子能譜儀 49 3-3-2 水接觸角量測儀(water contact angle measurement device) 52 3-3-3 掃描式電子顯微鏡(scanning electron microscopy,SEM) 54 3-3-4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy) 55 第四章、結果與討論 57 4-1 電漿聚合正庚胺薄膜 57 4-1-1 電漿參數最適化 58 4-1-2 薄膜厚度及沉積時間 64 4-1-3 薄膜表面化學鍵結組成分析(ATR-FTIR) 64 4-1-4 薄膜表面化學元素組成分析(XPS) 65 4-1-5 薄膜表面水濕性分析 67 4-1-6 薄膜表面型態分析 (SEM) 68 4-1-7 薄膜表面生物相容性測試(LDH(lactate dehydrogenase)方法) 70 4-2 AG@HAPP複合薄膜 71 4-2-1 製備Ag@HApp複合薄膜參數最適化 71 4-2-2 Ag@HApp複合薄膜化學元素組成分析(XPS) 73 4-2-3 Ag@HApp複合薄膜表面化學鍵結 (ATR-FTIR) 75 4-2-4 Ag@HApp複合薄膜表面型態分析 (SEM) 76 4-2-5 Ag@HApp複合薄膜抗菌能力分析 (E.coli及S.aureus) 79 4-3 利用AG@HAPP複合薄膜進行化學鍍銅 85 4-3-1 化學鍍銅層之晶體結構分析 (XRD) 85 4-3-2 化學鍍銅層之截面圖 (SEM) 86 4-3-3 化學鍍銅層之電學性質 88 4-3-4 具有形狀化學鍍銅層之尺度分析 89 第五章 結論與未來展望 91 第六章 參考文獻 93 附錄 (Q&A) 97

[1] Jiang Z, Jiang Z-j, Shi Y, Meng Y. Preparation and characteristics of acrylic acid/styrene composite plasma polymerized membranes. Applied Surface Science. 2010;256:6473-9.
[2] Brinkmann N, Sommer D, Micard G, Hahn G, Terheiden B. Electrical, optical and structural investigation of plasma-enhanced chemical-vapor-deposited amorphous silicon oxynitride films for solar cell applications. Solar Energy Materials and Solar Cells. 2013;108:180-8.
[3] Wang X, Grundmeier G. Surface analytical studies of Ar-plasma etching of thin heptadecafluoro-1-decene plasma polymer films. Applied Surface Science. 2006;252:8331-6.
[4] Liu S, Vareiro MMLM, Fraser S, Jenkins ATA. Control of Attachment of Bovine Serum Albumin to Pulse Plasma-Polymerized Maleic Anhydride by Variation of Pulse Conditions. Langmuir. 2005;21:8572-5.
[5] Lin Y-SE, Vidic RD, Stout JE, Yu VL. Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila. Water Research. 1996;30:1905-13.
[6] Lin Y-sE, Vidic RD, Stout JE, McCartney CA, Yu VL. Inactivation of Mycobacterium avium by copper and silver ions. Water Research. 1998;32:1997-2000.
[7] JR. M, JL. E, A. C, K. H, JB. K, JT. R. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346-53.
[8] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004;275:177-82.
[9] Kumar VS, Nagaraja BM, Shashikala V, Padmasri AH, Madhavendra SS, Raju BD, et al. Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. Journal of Molecular Catalysis A: Chemical. 2004;223:313-9.
[10] Jain P PT. Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter. Biotechnol Bioeng. 2005;90:59-63.
[11] Cho K-H, Park J-E, Osaka T, Park S-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta. 2005;51:956-60.
[12] Wang XC, Zheng HY, Lim GC. Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser. Applied Surface Science. 2002;200:165-71.
[13] Kao C-Y, Chouz K-S. Electroless Copper Plating onto Printed Lines of Nanosized Silver Seeds. Electrochem Solid-State. 2007;10:32-4.
[14] Akamatsu K, Ikeda S, Nawafune H. Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir. 2003;19:10366-71.
[15] Chou K-S, Lai Y-S. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Materials Chemistry and Physics. 2004;83:82-8.
[16] Yasuda HK. PLASMA POLYMERIZATION. ACADEMIC PRESS INC.1985.
[17] Inagaki N. Plasma surface modification and plasma polymerization: CRC; 1996.
[18] Tsaneva VN, Popov TK, Dias FM, Tarte EJ, Blamire MG, Evetts JE, et al. Optical emission spectroscopy and Langmuir probe characterisation of the plasma during high-pressure sputter deposition of high-Tc superconducting YBa2Cu3O7−x thin films. Vacuum. 2002;69:261-6.
[19] Tibbitt JM, Jensen R, Bell AT, Shen M. A Model for the Kinetics of Plasma Polymerization. Macromolecules. 1977;10:647-53.
[20] Kobayashi H, Bell AT, Shen M. Formation of an amorphous powder during the polymerization of ethylene in a radio-frequency discharge. Journal of Applied Polymer Science. 1973;17:885-92.
[21] YASUDA H, HSU T. Some Aspects of Plasma Polymerization Investigated
by Pulsed R.F. Discharge. POLYMER SCIENCE: Polymer Chemistry Edition. 1977;15:87-97.
[22] d’Agostino R, Favia P, Fracassi F, Lamendola R. Plasma-Enhanced Chemical Vapor Deposition. In: Gissler W, Jehn H, editors. Advanced Techniques for Surface Engineering: Springer Netherlands; 1992. p. 105-33.
[23] P. F, Agostino d. Plasma treatments and plasma deposition of polymers for biomedical applications. Surface and coatings Technology. 1998:1102-6.
[24] Song SH, Campbell SA. The effect of composition on surface morphology, formation mechanism and pinhole generation of cosputtered ytterbium silicide. Thin Solid Films 2009:6841-6.
[25] Shen M, Bell AT. In A review of recent advances in plasma polymerization. ACS symposium series. 1979:p1.
[26] Yasuda H. Magneto luminous chemical vapor deposition. CRC Press. 2011.
[27] Bogaerts A, Gijbels R. Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge. Spectrochimica Acta Part B: Atomic Spectroscopy. 2002;57:1071-99.
[28] Bogaerts A, Gijbels R. Calculation of crater profiles on a flat cathode in a direct current glow discharge. Spectrochimica Acta Part B: Atomic Spectroscopy. 1997;52:765-77.
[29] Venugopalan M. Basic processes in glow discharge plasmas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1987;23:405-17.
[30] KOBAYASHI H, BELL AT, SHEN M. Formation of an Amorphous Powder During the Polymerization of Ethylene in a Radio-Frequency Discharge. APPLIED POLYMER SCIENCE. 1973;17:885-92.
[31] Polak R, Bradwell GM, Gilbert JB, Danielsen S, Beppu MM, Cohen RE, et al. Optimization of Amine-Rich Multilayer Thin Films for the Capture
and Quantification of Prostate-Specific Antigen. American Chemical Society. 2015;31:5479-88.
[32] Niua Y, Zhangb X, Zhaob J, Tianc Y, Lia Y, Yana X. Preparation, characterization and properties of amine-functionalized silicon carbide/polyimide composite films. RSC Advances. 2014:28456-62.
[33] Sarıipek F, Karaman M. Initiated CVD of Tertiary Amine-Containing Glycidyl Methacrylate Copolymer Thin Films for Low Temperature Aqueous Chemical Functionalization. Chemical Vapor Deposition. 2014;20:373-9.
[34] Tauhardt L, Frant M, Pretzel D, Hartlieb M, Bぴucher C, Hildebrand G, et al. Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. J Mater Chem. 2014:4883.
[35] Goreham RV, Short RD, Vasilev K. Method for the Generation of Surface-Bound Nanoparticle Density Gradients. The Journal of Physical Chemistry C. 2011;115:3429-33.
[36] Multifunctional Three-Dimensional Nanodiamond-Nanoporous Alumina Nanoarchitectures. Carbon. 2014.
[37] Choukourov A, Biederman H, Kholodkov I, Slavinska D, Trchova M, Hollander A. Properties of amine-containing coatings prepared by plasma polymerization. Journal of Applied Polymer Science. 2004;92:979-90.
[38] Cheng F, Betts JW, Kelly SM, Schaller J, c TH. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chemistry. 2013:989-98.
[39] Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Research Letters. 2014;9:1-7.
[40] Kuo P-L, Chen W-F. Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-dendritic Poly(allylamine) Derivatives. The Journal of Physical Chemistry B. 2003;107:11267-72.
[41] Manikandan D, Mohan S, Magudapathy P, Nair KGM. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study. Physica B: Condensed Matter. 2003;325:86-91.
[42] Stepanov AL, Hole DE, Townsend PD. Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1999;149:89-98.
[43] Li Y, Lu Q, Qian X, Zhu Z, Yin J. Preparation of surface bound silver nanoparticles on polyimide by surface modification method and its application on electroless metal deposition. Applied Surface Science. 2004;233:299-306.
[44] Jackson RL. Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation. J Electrochem Soc. 1990;137:p95-101.
[45] Rohan JF, O’Riordan G, Boardman J. Selective electroless nickel deposition on copper as a final barrier/bonding layer material for microelectronics applications. Applied Surface Science. 2002;185:289-97.
[46] Yang GH, Kang ET, Neoh KG, Zhang Y, Tan KL. Surface Graft Copolymerization of Poly(tetrafluoroethylene) Films with N-Containing Vinyl Monomers for the Electroless Plating of Copper. Langmuir. 2001;17:211-8.
[47] Wang M-Q, Yan J, Du S-G, Qin H. A novel process of electroless nickel plating on PVC with semi-IPN hydrogel pretreatment. Journal of Alloys and Compounds. 2013;557:270-3.
[48] You JB, Kim SY, Park YJ, Ko YG, Im SG. A Vapor-Phase Deposited Polymer Film to Improve the Adhesion of Electroless-Deposited Copper Layer onto Various Kinds of Substrates. Langmuir. 2014;30:916-21.
[49] Garcia A, Berthelot T, Viel P, Mesnage A, Jégou P, Nekelson F, et al. ABS Polymer Electroless Plating through a One-Step Poly(acrylic acid) Covalent Grafting. ACS Applied Materials & Interfaces. 2010;2:1177-83.
[50] Wang J. Material analysis: Material research society Taiwan; 2004.
[51] Müller F, Grandthyll S, Zeitz C, Jacobs K, Hüfner S, Gsell S, et al. Epitaxial growth of graphene on Ir(111) by liquid precursor deposition. Physical Review B. 2011;84:075472.
[52] Good RJ. A Thermodynamic Derivation of Wenzel's Modification of Young's Equation for Contact Angles; Together with a Theory of Hysteresis1. Journal of the American Chemical Society. 1952;74:5041-2.
[53] Della-Bona A. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. Journal of Applied Oral Science. 2005;13:101-9.
[54] C.N. B, E.M. M. Fundamentals of molecular spectroscopy: McGraw-Hill; 1994.

無法下載圖示 全文公開日期 2020/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE