簡易檢索 / 詳目顯示

研究生: 宋易浩
Yi-Hao-Song
論文名稱: 全自動與半自動拋光作業建模之研究
Control Modeling of Automatic and Semi-Automatic Polishing Processes
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 藍振洋
Chen-Yang Lan
詹方正
Fang-Cheng Chan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 拋光加工建模拋光接觸現象人機互動設計
外文關鍵詞: polishing modeling, polishing contact phenomenon, human-computer interaction design
相關次數: 點閱:183下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密加工時,微小的加工參數變化及外在因素,將影響加工品質,但現實
    的精密加工作業很少將影響加工品質之因素進行深入探討與研究。本研究將拋
    光加工作業作為探討對象,並透過人機互動的架構控制拋光力,將影響拋光品
    質之因素深入探討
    本文開發拋光過程之系統模型,並將拋光情境分為全自動拋光以及半自動
    拋光,並將針對影響拋光力的原因納入模型參數,這些原因包含工業手臂不同
    拋光路徑對拋光力的影響、刀具與加工件所存在的座標系偏差、刀具及加工件
    接觸所發生的接觸現象,及半自動加工中人與搖桿之間的互動關係。最後透過
    實驗比對,觀察到模擬值與實際力量趨勢相近,因此可驗證本研究模型之正確
    性。


    During precision machining, small parameter changes and external factors will
    seriously affect the machining quality, but the actual precision machining operations
    rarely conduct in-depth discussions and research on the factors that affect the machining quality. This study takes polishing operation as the object of discussion, and controls the polishing force through the framework of human-computer interaction, and further explores the factors that affect the polishing quality.
    This study develops a system model of the polishing process, divides the polishing
    scenarios into automatic polishing and semi-automatic polishing, and incorporates the
    factors that affect the polishing force into the model parameters. These reasons include the influence of different polishing paths of the industrial robot on the polishing force,the coordinate system deviation between the tool and the workpiece, the contact between the tool and the workpiece. And the interaction between the human and the joystick in semi-automatic polishing. Finally, through experimental comparison, it is observed that the simulated value is similar to the actual force trend, so the correctness of the model in this study can be verified.

    目 錄 摘 要 I ABSTRACT II 目 錄 III 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1 前言與研究動機 1 1.2 文獻回顧 3 1.2.1 拋光加工 3 1.2.2 接觸現象 4 1.2.3 人機互動設計 5 1.3 研究目的 6 1.4 論文架構 6 第二章 拋光作業規劃及模型設計 7 2.1拋光作業硬體組成 7 2.1.1 自主式機械手臂 7 2.1.2 三軸平台 8 2.1.3 力量感測器 9 2.1.4 刀具與加工件 9 2.2 拋光軌跡規劃設定 11 2.3 自動化拋光實驗流程 15 2.4 拋光接觸力與預期不符原因 16 2.5 全自動拋光模型設計 17 2.5.1全自動拋光模擬架構 17 2.5.2 拋光路徑模型 17 2.5.3 接觸模型 18 2.6 半自動拋光模型設計 19 第三章 全自動拋光模型 21 3.1 拋光路徑模擬 21 3.1.1路徑模擬規劃 21 3.1.2 FINE點附近軌跡模擬 22 3.1.3 模擬路徑驗證 23 3.2 ABB座標系與加工件座標系之轉換 25 3.2.1 轉移矩陣 25 3.2.2 座標轉換實驗驗證 26 3.3 拋光接觸現象模擬 30 3.3.1 赫茲模型 30 3.3.2 虛擬重疊量與接觸正向力關係 31 第四章 拋光接觸現象實驗驗證 34 4.1 L型架接觸現象 34 4.1.1 實驗驗證設備及訊號轉換 34 4.1.2 L型架變形與力量關係實驗設計 36 4.1.3 實驗結果與討論 38 4.2 刀具受到力量之退後量 39 4.2.1 視覺分析軟體精度驗證 39 4.2.2 刀具受到力量後退量實驗設計 41 4.2.3 實驗結果與討論 42 4.3 刀具與加工件間接觸現象 45 4.3.1 兩者相對變形量實驗設計 45 4.3.2 實驗結果與討論 46 4.4 刀具旋轉接觸現象 47 4.4.1 摩擦係數實驗設計 47 4.4.2 實驗結果與討論 48 4.5全自動拋光模擬與實驗結果討論 49 4.5.1 拋光正向力模擬與實驗結果分析 49 4.5.2 拋光摩擦力模擬與實驗結果分析 50 4.6 結果與討論 52 第五章 半自動拋光之人機互動建模 54 5.1 人機互動搖桿 54 5.2 人機互動實驗設計與流程 55 5.3 人機互動實驗結果與分析 57 5.3.1 座標系校正結果 57 5.3.2 情境一實驗結果與分析 59 5.3.2 情境二實驗結果與分析 59 5.3.3 情境三實驗結果與分析 61 5.4結果與討論 63 第六章 研究總結與未來展望 64 6.1 研究總結 64 6.2 未來展望 64 參考文獻 65 附錄A 68 附錄B 69 附錄C 71  

    參考文獻
    [1] (2020) 工業技術研究院機械工業雜誌.
    [2] Zhao, J., Saito, K., Kondo, T., Narahara, H., Igarashi, S., Sasaki, T., Zhang, L. J. I. J. o. M. T. and Manufacture. (1995). A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure. vol. 35, no. 12, pp. 1683-1692.
    [3] Tsai, M. J., Chang, J.-L., Haung, J.-F. J. I. T. o. a. s. and engineering. (2005). Development of an automatic mold polishing system. vol. 2, no. 4, pp. 393-397.
    [4] Márquez, J., Pérez, J., Rıos, J. and Vizán, A. J. J. o. M. P. T. (2005). Process modeling for robotic polishing. vol. 159, no. 1, pp. 69-82.
    [5] 陳茂全(2008)。於CNC工具機進行自動球拋光之定力控制研究。國立臺灣科技大學機械工程系碩士,台北市。
    [6] 謝俊志(2012)。硬式拋光刀具與拋光參數對拋光性能影響之研究。國立臺灣海洋大學機械與機電工程學系碩士,基隆市。
    [7] 劉力輔(2012)。氣囊式拋光刀具與拋光參數對拋光性能影響之研究。國立臺灣海洋大學機械與機電工程學系碩士,基隆市。
    [8] 廖健宏(2018)。人機協同半自動化拋光作業之研究。國立臺灣科技大學機械工程系碩士,台北市。
    [9] Mohsin, I., He, K., Wenliang, Z. and Li, Z. (2020). Robotic Polishing of the Thin Plate Eyeglasses frame Under Effective Path Planning and Stable Force. 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 540-543. IEEE
    [10] 陳柏毓(2021)。以自製拋光膠體工具進行機器人輔助拋光之定力控制研究。國立臺灣科技大學機械工程系碩士,台北市。
    [11] Johnson, K. L. and Johnson, K. L., Contact mechanics. Cambridge university press, 1987
    [12] Goldsmith, W., Impact: The theory and physical behavior of colliding solids. E. Arnold, 1960
    [13] Marhefka, D. W., Orin, D. E. J. I. T. o. S., Man,, Systems, C.-P. A. and Humans. (1999). A compliant contact model with nonlinear damping for simulation of robotic systems. vol. 29, no. 6, pp. 566-572.
    [14] Lim, C. T. and Stronge, W. J. I. J. o. E. S. (1999). Oblique elastic–plastic impact between rough cylinders in plane strain. vol. 37, no. 1, pp. 97-122.
    [15] Zhang, L., Tam, H., Yuan, C., Chen, Y. and Zhou, Z. J. P. o. t. I. o. M. E., Part B: Journal of Engineering Manufacture. (2002). An investigation of material removal in polishing with fixed abrasives. vol. 216, no. 1, pp. 103-112.
    [16] Stevens, A. B. and Hrenya, C. J. P. t. (2005). Comparison of soft-sphere models to measurements of collision properties during normal impacts. vol. 154, no. 2-3, pp. 99-109.
    [17] Roswell, A., Xi, F. J., Liu, G. J. I. J. o. M. T. and Manufacture. (2006). Modelling and analysis of contact stress for automated polishing. vol. 46, no. 3-4, pp. 424-435.
    [18] Hu, G., Hu, Z., Jian, B., Liu, L. and Wan, H. (2010). On the determination of the damping coefficient of non-linear spring-dashpot system to model Hertz contact for simulation by discrete element method. 2010 WASE International Conference on Information Engineering, vol. 3, pp. 295-298. IEEE
    [19] Belkhir, N., Aliouane, T. and Bouzid, D. J. A. S. S. (2014). Correlation between contact surface and friction during the optical glass polishing. vol. 288, pp. 208-214.
    [20] Jordam Caserta, A., Navarro, H. A. and Cabezas-Gómez, L. (2016). Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM. Powder Technology, vol. 302, pp. 462-479. DOI: https://doi.org/10.1016/j.powtec.2016.07.032
    [21] Tian, F., Lv, C., Li, Z., Liu, G. J. C. J. o. M. S. and Technology. (2016). Modeling and control of robotic automatic polishing for curved surfaces. vol. 14, pp. 55-64.
    [22] Qing-Hui, W., Yu-Jun, L., Chen-Yang, X., Jing-Rong, L. and Xue-Feng, Z. J. T. I. J. o. A. M. T. (2019). Generation of material removal map for freeform surface polishing with tilted polishing disk. vol. 102, no. 9-12, pp. 4213-4226.
    [23] Xiao, M., Ding, Y., Fang, Z. and Yang, G. J. P. E. (2020). Contact force modeling and analysis for robotic tilted-disc polishing of freeform workpieces. vol. 66, pp. 188-200.
    [24] Hogan, N. (1985). Impedance control: An approach to manipulation: Part I—Theory.
    [25] Minsky, M., Ming, O.-y., Steele, O., Brooks Jr, F. P. and Behensky, M. (1990). Feeling and seeing: issues in force display. Proceedings of the 1990 symposium on Interactive 3D graphics, pp. 235-241.
    [26] van der Linde, R. Q. and Lammertse, P. J. I. R. A. I. J. (2003). HapticMaster–a generic force controlled robot for human interaction.
    [27] Lecours, A., Mayer-St-Onge, B. and Gosselin, C. (2012). Variable admittance control of a four-degree-of-freedom intelligent assist device. 2012 IEEE international conference on robotics and automation, pp. 3903-3908. IEEE
    [28] Choi, I., Ofek, E., Benko, H., Sinclair, M. and Holz, C. (2018). Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. Proceedings of the 2018 CHI conference on human factors in computing systems, pp. 1-13.
    [29] (2016). Product manual IRB 1200.
    [30] 周聖尉(2005)。化學機械拋光中拋光墊動態及靜態特性之研究。國立清華大學動力機械工程學系碩士,新竹市。

    QR CODE