簡易檢索 / 詳目顯示

研究生: 楊家睿
Chia-jui Yang
論文名稱: 雙延遲鎖定迴路為核心之高精度數位至時間轉換器
High Accuracy Digital to Time Converter with Dual DLLs
指導教授: 陳伯奇
Poki Chen
口試委員: 黃育賢
Yuh-shyan Hwang
陳信樹
Hsin-shu Chen
陳筱青
Hsiao-chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 數位至時間轉換器時序產生器延遲鎖定迴路循序漸近暫存器
外文關鍵詞: Digital to Time Converter, Time Generator, Delay Locked Loop, SAR
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

數位至時間轉換器被廣泛應用在自動測試儀器中,由於現今積體電路系統發展迅速,對各種高解析度之轉換器需求也急速增加,因此,高精度數位至時間轉換器的地位也日漸重要,為此,本論文提出利用兩組延遲鎖定迴路(Delay Locked Loop、簡稱DLL)為核心來實現高精度數位至時間轉換器,且利用循序漸近暫存器(Successive-Approximation Register、簡稱SAR)來取代傳統式延遲鎖定迴路中的充電幫浦與迴路濾波器,其目的是為了抑制充電幫浦的充放電流不匹配與切換時間誤差所產生的抖動,此架構同時也省略了迴路濾波器,因此,不僅可達到低抖動(Jitter),亦可減少晶片面積,降低成本。本電路所使用的製程為TSMC 1P6M 0.18 μm,操作頻率在420 MHz時,解析度為10 ps,最大脈衝寬度可達1.2 μs以上,總功率消耗為28.3 mW,主要晶片面積為0.33 mm2。


Digital to time converter (DTC) is widely used in automatic testing instruments. The needs of high resolution converter are increasing rapidly due to the speed of VLSI development nowadays. Therefore, DTC is getting more and more important. This thesis proposes a high accuracy DTC with dual delay locked loop (DLL). For the purpose of reducing the jitter from the current mismatch and switching time errors, the proposed DLL is used to replace the traditional charge pump and loop filter by successive-approximation register (SAR). Therefore, the proposed DTC can not only achieve low jitter but also reduce chip area for reducing the cost. The proposed DTC is produced by TSMC 1P6M 0.18 μm process. The resolution of the proposed DTC is up to 10ps. The maximum measurement range is 1.2 μs operating at 420 MHz. The power consumption is 28.3 mW. The die size is 0.33 mm2.

摘要..................................................................I Abstract.............................................................II 致謝................................................................III 目錄.................................................................IV 圖目錄...............................................................VI 表目錄..............................................................XII 第1章 緒論............................................................1 1.1 研究動機......................................................1 1.2 研究目的及方法................................................3 1.3 章節介紹......................................................3 第2章 數位至時間轉換器................................................4 2.1 數位至時間轉換器簡介..........................................4 2.2 絕對時間延遲之數位至時間轉換器................................6 2.3 相對時間延遲之數位至時間轉換器................................9 2.4 本論文架構...................................................15 第3章 延遲鎖定迴路原理與設計.........................................18 3.1 延遲鎖定迴路簡介.............................................18 3.2 類比式延遲鎖定迴路...........................................19 3.3 數位式延遲鎖定迴路...........................................27 3.3.1 以移位暫存器控制之數位式延遲鎖定迴路...................28 3.3.2 以計數器控制之數位式延遲鎖定迴路.......................29 3.3.3 以循序漸近暫存器控制之數位式延遲鎖定迴路...............30 3.3.4 以二進制搜尋之數位式延遲鎖定迴路.......................32 3.4 類比式與數位式延遲鎖定迴路的比較分析.....................33 3.5 低抖動延遲鎖定迴路各區塊討論.................................34 3.5.1 相位偵測器.............................................36 3.5.2 延遲元件...............................................40 3.5.3 循序漸近暫存器.........................................46 第4章 延遲鎖定迴路模擬與驗證.........................................48 4.1 電路設計流程與考量...........................................48 4.2 相位偵測器電路模擬與驗證.....................................49 4.3 數位控制延遲元件電路模擬與驗證...............................51 4.4 循序漸近暫存器電路模擬與驗證.................................53 4.5 延遲鎖定迴路整體電路模擬與驗證...............................54 4.5.1 製程變異模擬...........................................58 4.5.2 電壓變異模擬...........................................67 4.5.3 溫度變異模擬...........................................72 4.5.4 抖動模擬...............................................79 第5章 數位至時間轉換器模擬與驗證.....................................82 5.1 輸出脈衝產生器...............................................82 5.2 加載型下數計數器電路模擬與驗證...............................83 5.3 數位至時間轉換器模擬與驗證...................................85 5.3.1 製程變異模擬...........................................86 5.3.2 電壓變異模擬...........................................90 5.3.3 溫度變異模擬...........................................92 5.3.4 線性度模擬.............................................95 第6章 晶片佈局與量測考量.............................................97 6.1 晶片佈局.....................................................97 6.2 量測環境與考量...............................................98 第7章 結論與未來展望................................................100 參考文獻............................................................101

[1]J. Chapman, J. Currin and S. Payne, “A Low-Cost High-Performance CMOS Timing Vernier for ATE,” IEEE ITC, pp. 459-468, Oct. 1995.
[2]Credence System Corp., “STS 6000 System Description,” 1991.
[3]J. A. Gasbarro and M. A. Horowitz, “Integrated Pin Electronics for VLSI Functional Testers,” IEEE Journal of Solid-State Circuits, Vol.24, No.2, pp. 331~337, Apr. 1989.
[4]J. Chapman, “High-Performance CMOS-Based VLSI Testers:Timing Control and Compensation,” IEEE ITC, pp. 59-67, Sept. 1992.
[5]Robbins et al., “Low cost timing generator for automatic test equipment operating at high data rates,” U.S. Patent, No.5566188, Oct. 15, 1996.
[6]S. Katsu, T. Ueda, M. Kazumura and G. Kano, “A GaAs Programmable Timer with 125ps Delay-Time Resolution,” IEEE ISSCC, pp. 16~17, Feb. 1988.
[7]T.-I. Otsuji and N. Narumi, “A 10-ps resolution , process-Insensitive timing generator IC,” IEEE Journal of Solid-State Circuits, Vol.24, No.5, pp. 1412-1417, Oct. 1989.
[8]C.-W. Branson, “Integrated Pin Electronics for a VLSI test system,” IEEE Transaction on Industrial Electronics, Vol.36, pp. 23-27, May 1989.
[9]J. Christiansen, “An integrated high resolution CMOS timing generator based on an array of delay locked loops,” IEEE Journal of Solid-State Circuits, Vol.31, pp. 952-957, July 1996.
[10]F. Baronti, L. Fanucci, D. Lunardini, R. Roncella and R. Saletti, “A High-Resolution DLL-Based Digital-to-Time Converter for DDS Applications,” IEEE International Frequency Control Symposium and PDA Exhibition, pp. 649-653, May. 2002.
[11]嚴吉緯, “雙PLL核心之高精度數位至時間轉換器”國立台灣科技大學電子工程研究所碩士論文, July. 2008.
[12]M. Johnson and E. Hudson, “A variable delay line PLL for CPU-coprocessor synchronization,” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1218-1223, Oct. 1988
[13]Y. Moon, J. Choi, K. Lee, D. Jeong and M. Kim, “An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 377-384, Mar. 2000.
[14]B.-S. Kim L.-S. Kim, “A Low Power 100MHz All Digital Delay-Locked Loop,” IEEE International Symposium on Circuits and Systems, pp. 1820-1823, Jun. 1997.
[15]Y. Okajima, M Taguchi, M. Yanagawa, K. Nishimura and O. Hamada, “Digital Delay Locked Loop and Design Technique For High-Speed Synchronous Interface,” IEICE Trans. Electron., vol. E79-C, no. 6, pp. 798-807, Jun. 1996
[16]M. Hasegawa, M. Nakamura, S. Narui, S. Ohkuma and Y. Kawase et al., “A 256-Mb SDRAM Usign a Register-Controlled Digital DLL,” IEEE Journal of Solid-State Circuits, vol. 32, no. 11, pp. 1728-1734, Nov. 1997.
[17]G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, “Clock-Deskew Buffer Using a SAR-Controlled Delay-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1128-1136, Aug. 2000.
[18]S. Tanoi, T. Tanabe, K. Takahashi, S. Miyamoto and M. Uesugi, “A 250-622MHz Deskew and Jitter-Suppressed Clock Buffer Using Two-Loop Architecture,” IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 487-493, Apr. 1996.
[19]Yong-Bin Kim and Tom Chen, “A CMOS Delay Locked Loop (DLL) For Reducing Clock Skew to Under 500ps,” IEEE, pp. 681-682, 1997.
[20]C.-K. Liang, R.-J. Yang, and S.-I. Liu, “An All-Digital Fast-Locking Programmable DLL-Based Clock Generator,” IEEE Transactions on Circuit and Systems, vol. 55, no. 1, pp. 361-369, Feb. 2008.
[21]J.-H. Kim, Y.-H. Kwak, M. Kim, S.-W. kim, and C. Kim, “A 120-MHz 1.8-GHz COMS DLL-Based Clock Generator for Dynamic Frequency Scaling,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2077-2082, Sep. 2006.
[22]C.-C. Chung and C.-Y. Lee, “A New DLL-Based Approach for All-Digital Multiphase Clock Generation,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 469-475, Mar. 2004.
[23]C. Kim, I.-C Hwang, and S.-M. Kang, “Low-Power Small-Area±7.28-ps-jitter 1-GHz DLL-Based Clock Generator,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, Nov. 2002.
[24]J. Christiansen, “An Integrated High Resolution CMOS Timing Generator Based on An Array of Delay Locked Loops,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 952-957, July. 1996.
[25]H.-H. Chang, R.-J. Yang, and S.-I. Liu, “Low Jitter and Multirate Clock and Data Recovery Circuit Using a MSADLL for Chip-to-Chip Interconnection,” IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 51, pp. 2356-2364, Dec. 2004.
[26]X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s COMS Data Recovery DLL Using Half-Frequency Clock,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 711-715, Jun. 2002.
[27]T.-H. Lee, and J.-F. Bulzacchelli, “A 155-MHz Clock Recovery Delay and Phase-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. SC-27, no. 12, pp. 1736-1746, Dec. 1992.
[28]K.-H. Cheng, S.-M. Chang, S.-Y. Jiang, and W.-B. Yang, “A 2GHz Fully Differential DLL-Based Frequency Multiplier for High Speed Serial Link Circuit,” IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1174-1177, May. 2005.
[29]G. Chien, “Low-Noise Local Oscillator Design Techniques Using a DLL-Based Frequency Multiplier for Wireless Applications,” Ph.D. dissertation, Univ. of California, Berkeley, 2000.
[30]T. Kirihata et al., “A 113mm2 600Mb/s/pin 512Mb DDR2 SDRAM with Vertically-Folded Bitline Architecture,” IEEE ISSCC, pp. 382-33, Feb. 2001.
[31]T. H. Lee, K. S. Donnelly, and J. T. Ho et al., “A 2.5V CMOS Delay-Locked Loop for 18 Mbit, 500 Megabyte/s DRAM,” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1491-1496, Dec. 1994.
[32]W. Rhee, “Design of High-Performance COMS Charge Pumps in Phase Locked Loops,” IEEE Int. Symp. Circuits and Systems, pp. 545-548, 1999.
[33]F. Yuan, M. Youssef, and Y. Sun, “Efficient Modeling and Analysis of Clock Feed-through and Charge Injection of Switched-current Circuits,” CCECE’01, vol. 1, Toronto, ON, Canada, pp. 573-578, May 2001.
[34]B. Razavi, “Design of Analog COMS Integrated Circuit,” McGraw-Hill, 2001.
[35]F. Lin, J. Miller, A. Schoenfeld, M. Ma, and R. J. Baker, “A Register-Controlled Symmetrical DLL for Double-Data-Rate DRAM,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 565-568, Apr. 1999.
[36]H. Sutoh, K. Yamakoshi, and M. Ino, “Circuit Technique for Skew-Free Clock Distribution,” IEEE Custom Integrated Circuits Conf., pp. 163-166, 1995
[37]C.-S Hwang, W.-C. Chung, C.-Y. Wang, H.-W. Tsao, and S.-I. Liu, “A 2V Clock Synchronizer Using Digital Delay-Locked Loop,” Proc. APASIC, 91-94, 2000.
[38]R.-J. Yang and S.-I. Liu, “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 361-373, Feb. 2007.
[39]G.-K. Dehng, J.-W. Lin, and S.-I. Liu, “A Fast-Lock Mixed-Mode DLL Using a 2-b SAR Algorithm,” IEEE Journal of Solid-State Circuits, vol. 36 , no. 10, pp. 1464-1471, Oct. 2001.
[40]闕狀潁, “二進數位搜尋延遲鎖定迴路,”國立台灣大學電機工程研究所碩士論文, Jun. 2001.
[41]J.-R. Yuan, and C. Svensson, “Fast COMS Nonbinary and Counter,” Electron Lett., vol. 29, pp. 1222-1223, June. 1993.
[42]T. Okayasu et al., “1.83ps-Resolution COMS Dynamic Arbitrary Timing Generator for >4GHz ATE Applications,” IEEE ISSCC, pp. 522-523, February. 2006.
[43]W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator,” IEEE Trans. Circuits and System II, vol. 48, pp. 216-221, Feb. 2001.
[44]H-H Chang, J-Y Chang, C-Y Kuo, and S.-I. Liu, “A 0.7-2GHz Self-Calibration Multiphase Delay-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1051-1061, May. 2006.
[45]Kuo-Hsing Cheng, Wei-Bin Yang, “A low power, wide operating frequency and high noise immunity half-digital phased-locked loop,” IEEE Asia-Pacific Conf., pp. 263-266, Aug. 2002.
[46]T.-I Otsuji and N. Narumi, “A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array,” IEEE Journal of Solid-State Circuits, Vol. 26, pp. 806-811, May. 1991.
[47]T.-Y. Wang, S.-M. Lin and H.-W. Tsao, “Multiple Channel Programmable Timing Generators With Single Cyclic Delay Line,” IEEE Trans. Instrum. Meas., Vol. 53, pp. 1295-1303, Aug. 2004.
[48]B. Arkin, “Realizing a Production ATE Custom Processor and Timing IC Containing 400 Independent Low-Power and High-Linearity Timing Verniers,” IEEE ISSCC, pp. 348-349, Feb. 2004.
[49]M. Suda, K. Yamamoto, T. Okayasu, S. Kantake, S. Sudou and D. Watanabe, “CMOS High-Speed, High-Precision Timing Generator for 4.266-Gbps Memory Test System,” IEEE ITC, pp. -866, Nov. 2005.

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE