簡易檢索 / 詳目顯示

研究生: 盧一心
YI-HSIN LU
論文名稱: 二氧化鈰奈米顆粒室溫鐵磁來源之研究
The Origin of Room–Temperature Ferromagnetism(RTFM)in CeO2 Nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 黃子文
none
宋振銘
Jenn-Ning Song
鄭如茵
Ju-Yin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 二氧化鈰奈米顆粒鐵磁性
外文關鍵詞: CeO2
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以熱裂解法製備二氧化鈰(CeO2)奈米顆粒,並在不同溫度和氣氛下進行氧化還原反應,以改變CeO2奈米顆粒之粒徑與氧缺陷密度,並量測樣品於室溫下之磁性,希望建立CeO2奈米顆粒之粒徑—鐵磁性,及氧空缺—鐵磁性間的關連性。
實驗結果顯示,以熱裂解法製備的CeO2奈米顆粒粒徑約為2nm,且粒徑分佈均勻,分散性良好。在室溫下的磁性量測結果顯示,未經過氧化還原的樣品為順磁,而經過氧化還原後樣品均出現鐵磁。值得注意的是,在氧化氣氛下(air及O2)退火的樣品,其飽和磁矩(Ms)較還原氣氛下(Ar+3%H2)退火的樣品高。在本實驗中,於空氣下500oC退火的樣品有最大的Ms值(約為0.23 emu/g)。另一方面,XRD及TEM結果也發現經過熱處理後樣品粒徑改變,在氧氣下及空氣下熱處理的樣品有相近的粒徑分佈。
由這些實驗結果,我們認為在CeO2奈米顆粒系統,粒徑與氧空缺含量均會影響樣品的磁性,而本實驗特殊的磁性結果則是因熱裂解法製備的CeO2具有相當多的氧空缺,後續的氧化還原處理使樣品的粒徑及顆粒內的氧空缺含量同時產生變化,而有特殊的磁性表現。


This research discussion under the room temperature the cerium dioxide (CeO2) nanometer branch grain of ferromagnetism origin, by thermal crack solution preparation cerium dioxide nano particles, CeO2 nano particles which obtains carries on the redox reaction under the different temperature and the atmosphere, causes particle size and the oxygen flaw density change the CeO2 nano particles, gauges magnetism and the crystallinity again, hoped that establishes the CeO2 nano particles particle size - ferromagnetism, and oxygen vacancy - ferromagnetism correlational.
Demonstrated in the experimental result, makes the CeO2 particle size size and the dispersivity and the protecting agent by the thermal crack solution system (oil sour oil amine) the increase related, the oil sour oil amine recruitment is higher, the particle size is bigger, and the pellet dispersivity is better, and the oxidation reduction experimental result showed that along with heat treatment temperature increment, the CeO2pellet fill-out, under the reducing atmosphere (Ar+3%H2) the annealing sample, the saturated magnetic moment (Ms) increases along with the annealing temperature rise, under the oxidizing atmosphere (O2) and (Air) under the annealing sample, the saturated magnetic moment drops along with the temperature rise. The 500oC annealing's sample has the biggest Ms value under the air, compares with the XRD computation's particle size result, extrapolated that the warm solution preparation CeO2 has the quite many oxygen vacancies, but its magnetic variation is the particle size and the oxygen vacancy content also changes.

摘要 I ABSRACT II 致謝 IV 目錄 V 圖表索引 VII 第一章 緒論 01 1.1 前言 01 1.2 研究背景 02 1.3實驗目的 04 第二章 理論基礎與文獻回顧 05 2.1 二氧化鈰 05 2.2 奈米粉體之製備方式 06 2.2.1物理法 07 2.2.2 化學法 10 2.3熱裂解法(Thermal Decomposition)之原理 16 2.3.1保護劑與溶劑選用之原則 17 2.4 磁性簡介 18 2.4.1磁性與粒徑的關係 21 第三章 實驗方法 24 3.1實驗用藥品 24 3.2實驗流程 25 3.2.1二氧化鈰溶液製作流程 25 3.2.2氧化還原反應流程 26 3.3性質分析 26 第四章結果與討論 29 4.1添加不同油酸油胺量 29 4.2. CeO2奈米顆粒進行後續氧化還原反應 33 4.3 磁性比較 41 第五章 結論 44 參考文獻 45

1. B. T. Matthias, R. M. Bozorth and J. H. Val Vleck, Physical Review Letters. Vol. 7, pp. 160 (1961).
2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, Vol. 287, pp. 1019 (2000).
3. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science, Vol. 291, pp. 854 (2001).
4. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, National Material, No. 2, pp. 673 (2003).
5. N. H. Hong, J. Sakai, N. T. Huong and V. Brize, Applied Physical Letters, Vol. 87, pp.102505 (2005).
6. M.Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Nature (Londin), Vol. 430, pp. 630 (2004).
7. R. Monnier and B. Delley, Physical Review Letters, Vol. 87, pp. 157204 (2001).
8. I. S. Elfimov, S. Yunoki and G. A. Sawatzky, Physical Review Letters, Vol. 89, pp. 216403 (2002).
9. A. Zywietz, J. Furthmuller and F. Bechstedt, Physical Review B, Vol. 62, pp. 6854 (2000).
10.D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005).
11. H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 88, pp. 242507 (2006).
12. H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 90, pp. 102606(2007).
13. M. Y. Ge, H. Wang, E. Z. Lin, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Applied Physical Letters, Vol. 93, pp. 062505.(2008)
14. A Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and K. M. Krishnan, Physical Review Letters, Vol. 94, pp. 157204 (2005).
15. J. M. D. Coey, M. Venkatestan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles, Physical Review B, Vol.72, pp. 024450 (2005).
16. Das. Pemmaraju and S. Sanvito, Physical Review Letters, Vol. 94,pp. 217205 (2005).
17. Toshiyuki Masui, Kazuyasu Fujiwara, Ken-ichi Machida and Gin-ya Adachi, Chemical Materials, No. 9, pp. 2197-2204 (1997).
18. M. Aresta, A. Dibenedetto, C. Pastore, C. Cuocci, B. Aresta, S. Cometa, E. De Giglio, Catalysis, Today, No. 137 (2008) .
19. E.V. Tsipis, V.V. Kharton, Journal of Solid State Electrochemistry, Vol. 12, pp. 1367. (2008)
20. M. F. Montemor, R. Pinto, M.G.S. Ferreira, Electrochimic Acta, Vol. 54 pp. 5179-5189. (2009)
21. Mingzai Wu, Qihua Zhang, Yanmei Liu, Qingqing Fang, Xiansong Liu, Materials Research Bulletin, Vol. 44 pp.1437-1440. (2009)
22.H. F. Mark, D. F. Othmer, C. G. Overberger, G. T. Seaborg, Encyclopedia of Chemical Technology, vol. 5, John Wiley & Sons, New York (1970).
23. S. Tsunekawa, T. Fukuda and A. Kasuya, Journal of Atomspheric and Solar-Terrestrial Physical, Vol. 87, pp. 1318-1321 (2000).
24. T. Masui, K. Machida, T. Sakata, H. Mori and G. Adachi, Journal of Alloys and Compounds, No. 256, pp. 97-101 (1997).
25. N. Serpone, D. Lawless and R. Khairutdinov, Journal of Physical Chemistry B, Vol. 99, pp. 16646-16654 (1995).
26. M. Sugiura, Catalysis Surveys from Asiavol, Vol. 7, pp. 77-87 (2003).
27. N. C. Wu, E. W. Shi, Y. Q. Zheng and W. J. Li, Journal of the American Ceramic Society,Vol.85, pp. 2462-2468 (2002).
28. D. S. Bae, B. Lim, B. I. Kim and K. S. Han, Materials Letters, Vol. 56, pp.610-613(2002).
29. Daniel Andresscus, Egon Matijevic and Dan V.Goia, Colloids and Surfaces A: Physicochem Engineering Aspects, No. 29, pp. 91-100. (2006)
30. Robort J. P., and Lennart Bergstrom, Copyright by MARCEL DEKKER, Inc, (1994).
31. S. Peng, C. Wang, J. Xie, S.H. Sun, Journal of Atomspheric and Solar, Vol. 128 pp. 10676-10677. (2006)
32. Farrell, D.;Majetich, S. A. and Wilcoxon, Journal of Physical Chemistry B , No.107, pp. 11022.(2003)
33. 趙承琛,界面活性劑基礎,復文書局,78-89頁 (2003)。
34. 馬振基編,奈米材料科技原理與應用,全華科技圖書(2003)。
35. Soshin Chikazumi著,張煦、李學養翻譯,磁性物理學,聯經出版事業公司(1982)。
36. 莊萬發編撰,超微粒子理論應用,復漢出版社(1995)。
37. 陳育裕,「鐵氧超微磁粉之製備研究」,碩士論文,國立成功大學化學工程研究所,台南(1998)。
38. Rao, C. N. R. and Cheetham, A. K, Journal of Materials Chemistry ,Vol.11, pp. 2887.(2001)
39. Davids, M. J.;Taylor, J. I. ; Sachsinger, N and Bruce, International Journal of Andrology, Vol. 92, pp. 262.(1998)
40. Cullity, B. D., Introduction to Magnetic Material.(1972)
41. 黃忠良,磁性陶瓷,復漢出版社(1999)。
42. 黃忠良,磁性流體理論應用,復漢出版社(1999)。

無法下載圖示 全文公開日期 2015/01/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE