簡易檢索 / 詳目顯示

研究生: 邱政民
Cheng-Min Chiu
論文名稱: 五軸加工機之螺旋傘齒輪鐘型刀具切製法研究
SPIRAL BEVEL GEAR MANUFACTURING ON A CNC FIVE-AXIS MACHINE USING BELL-TYPE MILLING CUTTERS
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 尤春風
Chun-Fong You
蔡高岳
Kao-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: NC路徑規劃五軸加工機拓樸誤差分析鐘型刀具切製法螺旋傘齒輪VERICUT
外文關鍵詞: topographic errors, milling cutter
相關次數: 點閱:241下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螺旋傘齒輪與直傘齒輪和正齒輪相比之下有著更佳的傳遞效能與低噪音等優點,因此在工業界上有更廣泛的使用。以切削加工而言,面銑式和面滾式切製法為螺旋傘齒輪主要製造方法,然而這些切製法需要製作專用的刀具與在專用的切齒機上實施,對於生產少量或中等量齒輪的廠商來說這樣的經濟效益不符合成本。然而近年來五軸加工機的興起,許多廠商紛紛尋求使用五軸加工機生產的可能性,美國格里森公司與海勒公司合作提出於五軸加工機上以鐘型刀具製造螺旋傘齒輪的切製方法,但由於商業利益的考量,所以鐘型刀具切製法之螺旋傘齒輪齒面數學模式推導並未公開。
本論文目的是發展應用於五軸加工機之螺旋傘齒輪鐘型刀具切製法,首先以螺旋傘齒輪的齒面數學模式當作標準齒輪,該標準齒輪為格里森公司的SGDH切製法所建立。接著利用假想產形輪製造傘齒輪的概念推導泛用型搖台機之鐘型刀具切製法之螺旋傘齒輪齒面數學模式,最終基於五軸加工機上來推導鐘型刀具切製法之螺旋傘齒輪齒面數學模式,此泛用型搖台機之鐘型刀具切製法之螺旋傘齒輪齒面數學模式包含三個模組,分別為鐘型刀具、假想產形輪,以及工件齒輪與假想產形輪之間的相對運動。本論文所推導出的鐘型刀具切製法之螺旋傘齒輪齒面數學模式確保能接近標準齒輪,因此,將其與標準齒輪進行齒面拓樸誤差分析,以檢驗與標準齒輪之誤差量。為了利用五軸加工機當作製造的機台,本論文推導泛用搖台機至五軸加工機之機械設定,最後利用VERICUT模擬加工NC路徑來驗證推導之數學模式的正確性。


Compared with straight bevel gears, spiral bevel gears have been more widely used in industry due to their better transmission performance and lower noise. Spiral bevel gears are generally produced by cutting methods, such as face-milling and face-hobbing methods. However, the cutting methods need to use special cutting tools and implement on dedicated cutting machines. For the production of small or moderate amount of gear manufacturers that isn’t meet the cost. Considering cost and flexible manufacturing of bevel gears in small and medium batch size, five-axis machine center is another good option compared with the dedicated bevel gear cutting machine. Company Heller in cooperation with company Gleason offered a new solution for bevel gear cutting on its five-axis machine tool. Here, a bell-type milling cutter with indexable inserts replaces the special face-milling cutterhead. However, it did not disclose the details of such application due to commercial considerations.
The main goal of this paper is to establish a mathematical model of spiral bevel gear using a bell-type milling cutter on a five-axis machine center. First, a mathematical model of spiral bevel gear with the Gleason SGDH cutting method is established as a standard gear, and a virtual machine is proposed to provide movements between the cutter and the work gear. The generating gear purely rolls with the work gear that will obtain the tooth surface. This model contains three modules: a cutter, an imaginary generating gear, and the relative motion between an imaginary generating gear and work gear. And then, conversion from the virtual machine enables derivation of the nonlinear coordinates of the CNC five-axis machine. Finally, flank topographic errors are evaluated by compared with the theoretical tooth surface, and the five-axis tool paths is confirmed using VERICUT NC simulation software.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號定義 VIII 圖索引 XI 表索引 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 文獻回顧 2 1.5 論文架構 4 第 2 章 面銑式螺旋傘齒輪數學模式 5 2.1 前言 5 2.2 齒胚設計 5 2.3 面銑式刀盤數學模式 7 2.4 工件齒輪數學模式 9 2.5 數值範例 12 2.6 小結 14 第 3 章 基於泛用搖台機之鐘型刀具切削螺旋傘齒輪齒面數學模式 15 3.1 前言 15 3.2 鐘型刀具數學模式 15 3.3 刀具與假想產形輪相對位置 18 3.4 工件齒輪數學模式 21 3.5 拓樸點法向誤差 22 3.6 數值範例 22 3.7 小結 26 第 4 章 五軸加工機之機械設定推導 28 4.1 前言 28 4.2 五軸加工機介紹 28 4.3 五軸加工機之刀具到工件坐標系統 29 4.4 五軸加工機之機械設定推導 32 4.5 數值範例 34 4.6 小結 36 第 5 章 五軸加工機之加工NC碼規劃 37 5.1 前言 37 5.2 G54程式原點 37 5.3 加工路徑規劃 38 5.4 成形法路徑規劃 42 5.5 創成法路徑規劃 42 5.6 數值範例 42 5.6 小結 47 第 6 章 VERICUT軟體模擬切削結果 48 6.1 前言 48 6.2 VERICUT軟體介紹 48 6.3 刀具、工件與機台定義 48 6.4 切削模擬結果 50 6.5 小結 58 第 7 章 結論與建議 59 7.1 結果與討論 59 7.2 建議與未來展望 60 參考文獻 62 附錄 A. 螺旋傘齒輪小齒輪拓樸點位置 64 附錄 B. 螺旋傘齒輪大齒輪拓樸點位置 67 附錄 C. 小齒輪加工NC碼 70 附錄 D. 大齒輪加工NC碼 75 授權書 80

[1] 董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京 (2002)。
[2] Fuentes, A., Litvin, F. L., Mullins, B. R., Woods, R., and Handschuh, R. F., “Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears,” Transactions of ASME, Journal of Mechanical Design, 124(3), pp. 524–532(2002).
[3] ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA , USA (2008).
[4] Gleason Works, Calculation Instructions — Generated Spiral Bevel Gears, Duplex–Helical Method, Including Grinding, Rochester, NY, USA (1971).
[5] SubbaRao, B., Shunmugam, M.S. and Jayaprakash, V. , “Mathematical model for Generation of Spiral Bevel Gears”, Journal of Materials Processing Technology,Indian,327-334,1994
[6] Litvin, F. L., and Gutman, Y., 1981, "Methods of Synthesis and Analysis for Hypoid Gear-Drives of 'Format' and 'Helixform,' Part 1, 2 and 3," ASME J. Mech. Des., 103, pp. 83-113.
[7] 顏楷倫,模造螺旋傘齒輪設計,碩士論文,台灣科技大學,台北,2013.
[8] Fong, Z. H., 2000, "Mathematical model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motion," ASME J. Mech. Des., 122, pp. 136-142.
[9] Shih , Y. P., Fong, Z. H., Lin, C.Y. Mathematical model for a universal face hobbing hypoid gear generator, ASME Journal of Mechanical Design, 129(1):38-47, 2007.
[10] Litvin, F. L., Fuentes, A., Gear Geometry and Applied Theory, 2nd edition. Cambridge University Press, NY, (2004).
[11] Shih, Y. P., and Fong, Z. H., “Flank modification methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” Transactions of ASME, Journal of Mechanical Design, 129(12), pp. 1294–1302 (2007).
[12] 謝欣諺,傘齒輪切齒機之直傘齒輪雙連鎖碟型刀具切製法研究,碩士論文,台灣科技大學,台北,2013.
[13] Shih, Y. P., and Fong, Z. H., “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator,” ASME J. Mech. Des., 130(6), 062604(2008).
[14] Krenzer, T. J., Hunkeler, E. J., and Goldrich, R. N., Multi-Axis Bevel and Hypoid Gear Generating Machine, U.S. Patent 4,981,402(1991).
[15] 林士勛,五軸工具機之傘齒輪線上掃描式量測,碩士論文,台灣科技大學,台北,2013.
[16] 徐振炫,五軸刀具路徑規劃應用於齒輪加工之研究,碩士論文,中正大學,嘉義,2004.
[17] 簡文通,機械製造,全華圖書,台北 (2008)。
[18] FANUC Series 16i/160i/160is-MB, FANUC Series 18i/180i/180is-MB5, FANUC Series 18i/180i/180is-MB Operator’s Manual.
[19] 楊勝群,VERICUT 7.0中文版 數控加工仿真技術,清華大學出版社,北京(2010)。

QR CODE