簡易檢索 / 詳目顯示

研究生: 余杰群
Chieh-chun Yu
論文名稱: 加速式參數導向與對比限制直方圖等化技術
Speed-Up Parametric-Oriented and Contast Limited Histogram Equalization
指導教授: 郭景明
Jing-Ming Guo
口試委員: 李建德
Jiann-Der Lee
黃志良
Chih-Lyang Hwang
王乃堅
Nai-Jian Wang
夏至賢
Chih-Hsien Hsia
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 影像增強對比限制自適性直方圖等化對比增強直方圖等化積分影像
外文關鍵詞: Image enhancement, contrast limited adaptive histogram equalization, contrast enhancement, histogram equalizations, integral image.
相關次數: 點閱:382下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出自適性參數導向直方圖等化(Adaptive Parametric-Oriented Histogram Equalization, APOHE)來有效率地產生區域對比增強影像,首先,利用多個高斯分佈來預測參考範圍內的灰階直方圖分佈,其中預估的精準度可由兩個可調的參數(α,β)來控制,藉此得到良好的對比,當中為了提升處理效率,建立高斯分佈所需的平均值及標準差可透過積分圖的概念來快速取得,同時為了更進一步改善對比,於是提出校準式自適性參數導向直方圖等化(Adaptively corrected Parametric-Oriented Histogram Equalization, AcPOHE)來針對對比做補償,實驗結果顯示本論文提出的方法具有不錯的實用價值,因此可應用到不同的領域,例如圖案辨識、生物分析系統和監控系統,另外,比起先前的區域式對比強化技術,本論文提出的方法可以同時提供高對比且無不自然現象的增強結果。
雖然區域式對比強化技術能夠提供豐富的影像細節,但同時也會強化影像中存在的雜訊,尤其在灰階變化平緩的區域特別明顯,因此提出對比限制自適性直方圖等化(Contrast Limited Adaptive Histogram Equalization, CLAHE)來解決此問題,它藉由限制轉移函式的斜率,來有效抑制雜訊的增強,但龐大的運算量一直是CLAHE的主要問題,為了解決這問題,本論文提出積分對比限制自適性直方圖等化(Integral CLAHE, ICLAHE),透過積分影像的概念以及機率密度函數(PDF)裁切的過程來有效降低運算量,且強化結果與CLAHE完全一致,最後與近幾年的區域對比強化技術相比,ICLAHE不僅僅是最簡單的方法讓增強影像有良好的雜訊免疫能力與較少的邊緣暈開,同時也提供明顯的紋理細節,因此顯示ICLAHE仍具有很大的優勢在醫療成像領域。


In this thesis, Two regional contrast enhancement schemes are proposed. The first one, termed adaptive parametric-oriented histogram equalization (APOHE), is proposed to effectively generate artifact-free regional contrast enhanced images. First, the grayscale histogram of a specific region is modeled with multiple Gaussian distributions adjusted by two user-defined parameters (α,β) for yielding good contrast. In which, to improve processing efficiency, the required mean and variance of these Gaussian distributions can be rapidly derived through the concept of integral image. In addition, the adaptively corrected POHE (AcPOHE) is also proposed to further improve the contrast with a limited trade-off on computations. Experimental results demonstrate good practical values of the proposed method, and thus it can be applied for various applications such as pattern recognition, biometrics analysis system and surveillance system. Comparing with former speed-oriented methods, good contrast and artifact-free results can be achieved simultaneously.
Although regional contrast enhancement methods can obtain richer details as expected, the noises accompanied with the images are enhanced as well, in particular those homogeneous regions. To solve this issue, the contrast limited adaptive histogram equalization (CLAHE) is proposed. The method utilizes the AHE structure with restricted slope of the transformation function for the reduction of noises. Yet, massive computational complexity is its major deficiency. To cope with this, a method termed integral CLAHE (ICLAHE) is proposed to specifically address this issue. In this method, the concept of integral image and the property during pdf clipping are both exploited for less computations from the original O(M^2×P^2) to O((L+1)×P^2) for images of size P×Pand contextual region size M×M. Compared with state-of-the-arts regional contrast enhancement methods, the proposed method is not merely the simplest method of providing less halo effect and noises, but offering richer distinguishable textual details. As a result, a great potential of the proposed method on medical imaging is demonstrated.

摘要 I Abstract II 誌謝 IV 目錄 V 圖表索引 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 研究目的 3 1.4 論文架構-------------------------------------------------------------------------------------3 第二章 全域式影像強化技術 5 2.1 直方圖等化(Histogram Equalization, THE) 5 2.2 動態直方圖化(Dynamic Histogram Equalization, DHE) 7 2.3遞迴分割結合權重調整直方圖等化(Recursively Separated and Weighted Histogram Equalization, RSWHE) 11 2.4 基於可旋轉型態學處理的對比增強演算(Top-hat contrast enhancement operator based on Rotational Morphological Processing) 15 第三章 區域式影像強化技術 18 3.1 自適性直方圖等化(Adaptive Histogram Equalization, AHE) 18 3.2部分重疊子區塊直方圖等化(Partially Overlapped Sub-block Histogram Equalization, POSHE) 21 3.3串接式之多步驟二項式濾波直方圖等化(Cascaded Multistep Binomial Filtering Histogram Equalization, CMBFHE) 27 3.4 概括式適應性直方圖等化(Generalization of Adaptive Histogram Equalization, GAHE) 32 3.5 對比限制自適性直方圖等化(Contrast Limited Adaptive Histogram Equalization, CLAHE) 36 3.6 直方圖調整之對比限制自適性直方圖等化(Histogram Modified Contrast Limited Adaptive Histogram Equalization, HMCLAHE) 42 3.7 基於邏輯函數之自適性直方圖等化(Adaptive Histogram Equalization Based on Sigmoid function, ACEBSF) 45 第四章 加速式參數導向區域直方圖等化技術 48 4.1 參數導向直方圖等化( Parametric-Oriented Histogram Equalization, POHE) 48 4.2 積分圖(Integral Image) 49 4.3自適性參數導向直方圖等化(Adaptive Parametric-Oriented Histogram Equalization, APOHE) 52 4.3.1 處理策略(Processing Strategy) 54 4.3.2 對比補償(Contrast Compensation) 59 4.3.3 執行步驟(Implementation) 61 4.3.4 參數最佳化(Parameter Optimization) 62 4.4 實驗結果 67 第五章 加速式對比限制自適性直方圖等化技術 78 5.1積分對比限制自適性直方圖等化(Integral Contrast Limited Adaptive Histogram Equalization, ICLAHE) 78 5.1.1 簡化PDF計算(Simplified PDF Calculation) 79 5.1.2 轉換函式(Transformation Function) 81 5.1.3 執行步驟(Implementation) 83 5.2 與對比限制自適性直方圖等化比較(Comparison with CLAHE) 84 5.3 與最近技術比較(Comparison with State-of-the-arts) 85 5.3.1 暈開效應(Halo Effect) 86 5.3.2 雜訊敏感度(Noise Sensitivity) 88 5.3.3 對比(Contrast) 92 5.3.3 處理時間(Processing Time) 96 第六章 結論與未來展望 98 參考文獻 99

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Reading, MA: Addison-Wesley, 1992.
[2] S. Hashemi, S. Kiani, N. Noroozi, and M. E. Moghaddam, “An image contrast enhancement method based on genetic algorithm,” Pattern Recognition Letters, vol. 31, no. 13, pp. 1816-1824, 2010.
[3] Y. T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Trans. Consumer Electronics, vol. 43, no. 1, pp. 1-8, 1997.
[4] Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp. 68-75, 1999.
[5] S. D. Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Trans. Consumer Electronics, vol. 49, no. 4, pp. 1310-1319, 2003.
[6] S. D. Chen and A. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,” IEEE Trans. Consumer Electronics, vol. 49, no. 4, 1301-1309, 2003.
[7] K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive sub-image histogram equalization applied to grayscale images,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1209-1221, 2007.
[8] M. Kim and M. G. Chung, “Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement,” IEEE Trans. Consumer Electrionics, vol. 54, pp. 1389-1397, 2008.
[9] D. Menotti, L. Najman, J. Facon, and A. de A. Araujo, “Multi-histogram equalization methods for contrast enhancement and brightness preserving,” IEEE Trans. Consumer Electronics, vol. 53, no. 3, pp. 1186-1194, 2007.
[10] T. Celik and T. Tjahjadi, “Automatic image equalization and contrast enhancement using Gaussian mixture modeling,” IEEE Trans. Image Processing, vol. 21, no. 1, pp.145-156, 2012.
[11] Y. Yang, Z. Su, and L. Sun, “Medical image enhancement algorithm based on wavelet transform,” Electronics Letters, vol. 46, no. 2, pp. 120-121, 2010.
[12] H. D. Cheng, R. Min, and M. Zhang, “Automatic wavelet base selection and its application to contrast enhancement,” Signal Processing, vol. 90, no.4, pp. 1279-1289, 2010.
[13] S. S. Alur and M. C. Hanumantharaju, “A novel approach Based on wavelet and non-linear transfer function-based local approach for real color image enhancement,” in Proc. International Conference on Computing Sciences, pp. 1-6, 2012.
[14] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. M. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355-368, 1987.
[15] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Trans. Image Processing, vol. 9, no. 5, pp. 889-896, 2000.
[16] J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast enhancement using partially overlapped sub-block histogram equalization,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475-484, 2001.
[17] F. Lamberti, B. Montrucchio, and A. Sanna, “CMBFHE: A novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization,” IEEE Trans. Consumer Electronics, vol. 52, no. 3, pp. 966-974, 2006.
[18] J. Linan, S. Zhaoyun, and S. Aimin, “Local image contrast enhancement under nonuniform illumination,” in Proc. International Technology and Innovation Conference, pp. 1-5, 2009.
[19] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” Graphics Gems IV, Academic Press, 1994.
[20] Z. Hameed and C. Wang, “Contrast enhancement by adaptive mapping function with local information,” in Proc. IEEE International Midwest Symposium on Circuits and Systems, pp. 1-4, 2011.
[21] M. Sundaram, K. Ramar, N. Arumugam, and G. Prabin, “Histogram based contrast enhancement for mammogram images,” in Proc. International Conference on Signal Processing, Communication, Computing and Networking Technologies, pp. 842-846, 2011.
[22] S. Lal and M. Chandra, “Efficient algorithm for contrast enhancement of natural images,” International Arab Journal of Information Technology, vol. 11, no. 1, pp. 95-102, 2014.
[23] A. M. Reza, “Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement,” Journal of VLSI Signal Processing, vol. 38, no. 1, pp. 35-44, 2004.
[24] Y. Kimori, “Morphological image processing for quantitative shape analysis of biomedical structures: Effective contrast enhancement,” Journal of Synchrotron Radiation, vol. 20, no. 6, pp. 848-853, 2013.
[25] Y. F. Liu, J. M. Guo, B. S. Lai, and J. D. Lee, “High efficient contrast enhancement using parametric approximation,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2444-2448, 2013.
[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NY: Dover, 1964.
[27] P. Viola and M. J. Jones, "Robust real-time object detection," Second International Workshop on Statistical and Computational Theories of Vision, 2001.
[28] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005.
[29] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
[30] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Trans. Image Processing, vol. 20, no. 5, pp. 1185-1198, May 2011.
[31] NTUST MSPLab image database: http://msp.ee.ntust.edu.tw/public%20file/BSLai/NaturalSet.rar.
[32] V. Vonikakis, I. Andreadis, and A. Gasteratos, “Fast centre–surround contrast modification,” IET Image Processing, vol. 2, no. 1, pp. 19-34, 2008.
[33] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008 - A database for evaluation of full-reference visual quality assessment metrics,” Advances of Modern Radioelectronics, vol. 10, pp. 30-45, 2009.
[34] A. N. Belbachir and P. M. Goebel, “Medical image compression: study of the influence of noise on the JPEG 2000 compression performance,” in Proc. International Conference on Pattern Recognition, pp. 893-896, 2006.
[35] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and K. E. Muller, “Contrast-limited adaptive histogram equalization: speed and effectiveness,” in Proc. the First Conference on Visualization in Biomedical Computing, pp. 337-345, 1990.
[36] B. S. Min, D. K. Lim, S. J. Kim, and J. H. Lee, “A novel method of determining parameter of CLAHE based on image entropy,” International Journal of Software Engineering and its Applications, vol. 7, no. 5, pp. 113-120, 2013.
[37] National biomedical imaging archive: https://imaging.nci.nih.gov/
[38] L. Jiao, Z. Sun, and A. Sha, “Improvement of image contrast with local adaptation,” in Proc. Intl. Conf. Multimedia and Information Technology, pp. 51-54, 2010.
[39] S. S. Agaian, K. Panetta, and A. M. Grigoryan, “A new measure of image enhancement,” in Proc. Intl. Conf. Signal Processing and Communication, 2000.

QR CODE