簡易檢索 / 詳目顯示

研究生: Novia Nur Fitriana Sari
Novia Nur Fitriana Sari
論文名稱: 環氧桐油乙酯作為生物潤滑劑基礎油
Epoxy Tung Oil Ethyl Ester as Bio-Lubricant Base Stock
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Alchris W. Go
Alchris W. Go
Meng-Jiy Wang
Meng-Jiy Wang
朱義旭
Yi-Hsu Ju
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 生質潤滑油環氧化環氧化桐油乙基酯轉酯化桐油桐油乙基 酯
外文關鍵詞: bio lubricant, epoxidation, epoxy tung oil ethyl ester, transesterification, tung oil, tung oil ethyl ester
相關次數: 點閱:183下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環氧桐油乙酯(ETOEE)是利用桐油乙酯在不需觸媒下,與甲酸和過氧化
    氢反應來產生。本研究使用兩步驟;利用氫氧化甲為觸媒催化與乙醇進行轉
    酯化反應,接著進行環氧化。轉酯化條件為;桐油與乙醇的莫爾比為 1:20,
    在 60℃下反應 2小時。在使用 5.86 g甲酸、14.5 g過氧化氫、10 g TOEE以及
    在 50oC 下反應 3 小時後可得到的最高轉化率和產率分别為 93.6%和 87.2
    %。本研究的目的是提高桐油的熱氧化稳定性、動黏度和黏度指数。在氮氣和
    氧氣環境下使用熱重分析(TGA)法來證實熱氧化稳定性结果。透過使用
    FTIR證實环氧基團的存在以及雙键的移除。動黏度則是使用 MCR來確定。


    Epoxy tung oil ethyl ester (ETOEE) was produced by using tung oil ethyl ester (TOEE) and reacted with formic acid (FA) and hydrogen peroxide that was employed without catalyst. This study used two steps: transesterification with ethanol and KOH as catalyst followed by epoxidation. The transesterification was carried out at a molar ratio of tung oil to ethanol of 1:20, 60oC for 2 h. The highest conversion and yield are 93.6% and 87.2%, respectively which were obtained by using 5.86 g of formic acid, 14.5 g of hydrogen peroxide and 10 g of TOEE with reaction maintained at 50oC for 3 h. The objective of the research was to enhance the thermal-oxidative stability, kinematic viscosity, and analyze viscosity index of tung oil. Thermal-oxidative stability results were confirmed by using thermo gravimetric analysis (TGA) method under nitrogen and oxygen atmosphere. The presence of epoxy group and double bonds removal were clarified by using Fourier-transform infrared spectroscopy (FTIR). The kinematic viscosity was confirmed by using modular compact rheometer (MCR).

    Recommendation Letter .......................................................................................... ii Qualification Letter ................................................................................................ iii Abstract .................................................................................................................. iv 摘要 ......................................................................................................................... v Acronyms and Abbreviations ................................................................................. vi Acknowledgement................................................................................................. vii Contents ............................................................................................................... viii List of Figures ......................................................................................................... x List of Tables.......................................................................................................... xi Chapter 1 ................................................................................................................. 1 1.1 Background of Study ..................................................................................... 1 Chapter 2 ................................................................................................................. 5 2.1 Petroleum Based Lubricant ........................................................................... 5 2.2 Bio-Lubricant ................................................................................................ 6 2.3 Various Modification Methods ..................................................................... 7 2.4 Bio-lubricant from modification of vegetable oil ........................................ 11 2.5 Tung Oil ...................................................................................................... 16 2.6 Physical Properties Standard ....................................................................... 20 2.6.1 Acid Value ............................................................................................ 20 2.6.2 Viscosity at 40oC and 100oC ................................................................. 20 Chapter 3 ............................................................................................................... 22 3.1 Materials ...................................................................................................... 22 3.2 Instruments .................................................................................................. 22 3.3 Methods ....................................................................................................... 23 3.3.1 Transesterification with Ethanol ........................................................... 23 3.3.2 Epoxidation of Tung Oil Ethyl Ester .................................................... 24 3.4 Identification of Physicochemical Properties................ 25 3.4.1 Acid Value (AV)................. 25 3.4.2 Free Fatty Acid (FFA)................. 26 3.4.3 Iodine Value (IV)............... 26 3.4.4 Epoxidation Conversion.................. 27 3.4.5 pH.................... 27 3.4.6 Yield..................... 27 3.4.7 Density at Room Temperature.................... 28 3.4.8 Dynamic Viscosity at 40oC, 60oC, 80oC, and 100oC............... 28 3.4.9 Kinematic Viscosity at 40oC, 60oC, 80oC, and 100oC.................. 29 3.4.10 Epoxy Group %................... 31 3.4.11 Viscosity Index...................... 31 Chapter 4.............. 33 4.1 GC Analysis of Tung Oil Composition............ 33 4.2 Effect of Hydrogen Peroxide and Formic Acid in Epoxidation Conversion.............. 35 4.3 Yields of Epoxidation......... 37 4.4 Epoxy Group %............ 38 4.5 Physicochemical Properties of TO, TOEE and ETOEE............. 39 4.6 Thermal Stability of ETOEE............... 40 4.7 Oxidative Stability of TO, TOEE and ETOEE................... 41 4.8 FTIR studies of TO, TOEE and ETOEE................... 44 4.9 Rheological Measurements................... 45 Chapter 5.................. 51 5.1 Conclusions....................... 51 5.2 Future Prospects............................ 51 References.............53

    2016. Application Note 67 – Total Acid Number (TAN). MANTECH-INC.com
    Abdullah, B. M., Yusop, R. M., Salimon, J., Derawi, D., & Ahmed, W. A. (2016). Epoxidation Synthesis Of Linoleic Acid For Renewable Energy Applications. Malaysian Journal of Analytical Science,20(1), 131-141. doi:10.17576/mjas-2016-2001-14
    Abdullah, B. M., Zubairi, S. I., Huri, H. Z., Hairunisa, N., Yousif, E., & Basu, R. C. (2016). Polyesters Based on Linoleic Acid for Biolubricant Basestocks: LowTemperature, Tribological and Rheological Properties. Plos One,11(3), 1-15. doi:10.1371/journal.pone.0151603
    Adhvaryu, A., & Erhan, S. (2002). Epoxidized soybean oil as a potential source of high-temperature lubricants. Industrial Crops and Products,15(3), 247-254. doi:10.1016/s0926-6690(01)00120-0
    Afaf G. A.,Hiba A. B., Elaf E. H. (2015). Corrosion Management Methods of High TAN Crude Case Study: (Fula Crude Oil-Sudan). American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 11(1), 1-7.
    Åkerman, C. O., Gaber, Y., Ghani, N. A., Lämsä, M., & Hatti-Kaul, R. (2011). Clean synthesis of biolubricants for low temperature applications using heterogeneous catalysts. Journal of Molecular Catalysis B: Enzymatic,72(3-4), 263-269. doi:10.1016/j.molcatb.2011.06.014
    Alder, R. W., & Davis, A. P. (n.d.). (2006).The design of organic catalysis for epoxidation by hydrogen peroxide. Highlights in Computational Chemistry II,649-652. doi:10.1007/978-3-540-49757-8_16
    Annisa, A. N., & Widayat, W. (2018). A Review of Bio-lubricant Production from Vegetable Oils Using Esterification Transesterification Process. MATEC Web of Conferences,156, 1-7. doi:10.1051/matecconf/201815606007
    Ao, A. (2016). The Effects of Transesterification and Blending on the Fatty Acid Profiles of Vegetable Oils. Saudi Journal of Engineering and Technology,1(2), 49-54. doi:10.21276/sjeat.2016.1.2.3 Arumugam, S., Sriram, G., Chowdary, A. H., & Sai, J. S. (2015). Enhancement of Thermo-Oxidative Stability of Vegetable Oil Based Lubricant via Chemical Modification Techniques. Applied Mechanics and Materials,813, 695-699. doi:10.4028/www.scientific.net/amm.813-814.695 Ayetor, G. K., Sunnu, A., & Parbey, J. (2015). Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera. Alexandria Engineering Journal,54(4), 12851290. doi:10.1016/j.aej.2015.09.011 Bach, R. D., Canepa, C., Winter, J. E., & Blanchette, P. E. (1997). Mechanism of Acid-Catalyzed Epoxidation of Alkenes with Peroxy Acids. The Journal of Organic Chemistry,62(15), 5191-5197. doi:10.1021/jo950930e Banihani, F. F. (2016). Transesterification and Production of Biodiesel from Waste Cooking Oil: Effect of Operation Variables on Fuel Properties. American Journal of Chemical Engineering,4(6), 154. doi:10.11648/j.ajche.20160406.13
    Belgharza, M., Hassanain, I., Lakrari, K., Moudane, M.E., Satrallah, A., El Azzouzi, E., El Belghiti, M. A. (2014). Kinematic Viscosity Versus Temperature for Vegetable Oils: Argan, Avocado and Olive. Australian Journal of Basic and Applied Sciences, 8(2), 342-345.
    Berry, R., & Mueller, M. (1994). Photocatalytic Decomposition of Crude Oil Slicks Using TiO2 on a Floating Substrate. Microchemical Journal,50(1), 28-32. doi:10.1006/mchj.1994.1054
    Borugadda, V. B., & Goud, V. V. (2014). Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ionexchange Resin (IR-120) as a Catalyst. Energy Procedia,54, 75-84. doi:10.1016/j.egypro.2014.07.249
    Borugadda, V. B., & Goud, V. V. (2015). Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil. Energy Science & Engineering,3(4), 371-383. doi:10.1002/ese3.77
    Borugadda, Venu Babu, and Vaibhav V. (2015).Goud. In-Situ Epoxidation of Castor Oil Using Heterogeneous Acidic Ion-Exchange Resin Catalyst (IR-120) for Bio-Lubricant Application. Tribology Online,10(5), 354–359. doi:10.2474/trol.10.354.
    Cerit, A., Marti, M. E., Soydal, U., Kocaman, S., & Ahmetli, G. (2016). Effect of Modification with Various Epoxide Compounds on Mechanical, Thermal, and Coating Properties of Epoxy Resin. International Journal of Polymer Science,2016, 1-13. doi:10.1155/2016/4968365 Chai, M., Tu, Q., Lu, M., & Yang, Y. J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology,125, 106-113. doi:10.1016/j.fuproc.2014.03.025
    Chang, T., Yunus, R., Rashid, U., Choong, T. S., Biak, D. R., & Syam, A. M. (2015). Palm Oil Derived Trimethylolpropane Triesters Synthetic Lubricants and Usage in Industrial Metalworking Fluid. Journal of Oleo Science,64(2), 143-151. doi:10.5650/jos.ess14162
    Chauhan, C., Prerna, V.K. Chhibber. (2013). Non-Edible Oil as a Source of BioLubricant for Industrial Applications: A Review. International Journal of Engineering Science and Innovative Technology,2(1), 299-305.
    Chaurasiya, K., Subhash, S.A. (2017). The Prospect of Linseed Oil Based Bio Lubricant in Machine Application: A Review. International Journal for Scientific Research & Development,5(2),1909-1911.
    Chen, Y., Chen, J., Chang, C., & Chang, C. (2010). Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions. Bioresource Technology,101(24), 9521-9526. doi:10.1016/j.biortech.2010.06.117 Cleveland, C. J., & Morris, C. G. (2013). Handbook of energy. Waltham, MA: Elsevier.
    Cooke VB. (1982). The Role of Additive in the Automobile Industry, ASLE-1982.
    Coyler CC (2000). Gasoline Engine Oils: Performance, Evaluation and Classification. 10th World petroleum Congress, Moscow, 10, 112.
    Danov, S. M., Kazantsev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E., & Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catalysis Science & Technology,7(17), 3659-3675. doi:10.1039/c7cy00988g Derawi, D., & Salimon, J. (2010). Optimization on Epoxidation of Palm Olein by Using Performic Acid. E-Journal of Chemistry,7(4), 1440-1448. doi:10.1155/2010/384948
    Ding, J., Xia, Z., & Lu, J. (2012). Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g) for Biodiesel Production. Energies,5(8), 2683-2691. doi:10.3390/en5082683
    Elemsimit, H. A., & Grecov, D. (2015). Non-Newtonian behavior in canola-oilbased bio-hydraulic oil. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,230(3), 257-265. doi:10.1177/1350650115599013 Elsharkawy, A. A. (2005). Effects of lubricant additives on the performance of hydrodynamically lubricated journal bearings. Tribology Letters,18(1), 63-73. doi:10.1007/s11249-004-1758-7ma Ethyl alcohol handbook. (1981). New York, N.Y. (99 Park Ave., New York 10016): U.S.I. Chemicals.
    Fong, M. N., & Salimon, J. (2012). Epoxidation of Palm Kernel Oil Fatty Acids. Journal of Science and Technology,4(2),87-98.
    Freedman B.; Pyrde E.H.; Mounts T.L. (1984). Variables affecting yields of fatty esters from transesterified vegetable oils. JAOCS, ku di lab, 1638-1643.
    Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society,61(10), 1638-1643. doi:10.1007/bf02541649
    Gadhave, L. S., Ragit S. S. (2016). Tung Biodiesel as an alternative fuel for CL engine: Review. International Journal of Science and Technology Research,5(5), 1845-1848.
    Gan, L. H., Ooi, K. S., Gan, L. M., & Goh, S. H. (1995). Effects of epoxidation on the thermal oxidative stabilities of fatty acid esters derived from palm olein. Journal of the American Oil Chemists Society,72(4), 439-442. doi:10.1007/bf02636085 Ghaednia, H., Jackson, R. L., & Khodadadi, J. M. (2013). Experimental analysis of stable CuO nanoparticle enhanced lubricants. Journal of Experimental Nanoscience,10(1), 1-18. doi:10.1080/17458080.2013.778424 Gisdakis, P., & Rösch, N. (2001). Solvent Effects on the Activation Barriers of Olefin Epoxidation − A Density Functional Study. European Journal of Organic Chemistry,2001(4), 719-723. doi:10.1002/1099-0690(200102)2001:43.0.co;2-6 Goldblatt, L., Hopper, L., & Wood, D. (1957). Epoxy Resin Esters Containing Tung Oil Fatty Acids. Industrial & Engineering Chemistry,49(7), 1099-1102. doi:10.1021/ie50571a027
    Gupta, S. S., Guchhait, A., Sarkar, S., & Ghosh, M. (2016). Comparative Evaluation of the Physico-chemical Properties of Chemically and Enzymatically Epoxidised Soybean Oil. International Research Journal of Chemistry,1(2), 1724.
    Gusain, Rashi. (2016). Fatty-Acid-Constituted Halogen-Free Ionic Liquids as Renewable, Environmentally Friendly, and High-Performance Lubricant Additives. Industrial & Engineering Chemistry Research,55(4), 856–865. doi:10.1021/acs.iecr.5b03347.
    Harshal P., Jyotsna W. (2013). Catalyst for epoxidation of oils: a review. Discovery,3(7),10-14.
    Hegazy M.N., Effat H.A. (2010). Monitoring some environmental impacts of oil industry on coastal zone using different remotely sensed data. The Egyptian Journal of Remote Sensing and Space Sciences,13, 63-74 doi:10.1016/j.ejrs.2010.07.008
    Hincapie, B., Llano, S. M., Garces, H. F., Espinal, D., Suib, S. L., & Garces, L. J. (2017). Epoxidation of cyclopentene by a low cost and environmentally friendly bicarbonate/peroxide/manganese system. Adsorption Science & Technology,36(12), 9-22. doi:10.1177/0263617417701744
    Hörner, D. (2002). Recent trends in environmentally friendly lubricants. Journal of Synthetic Lubrication,18(4), 327-347. doi:10.1002/jsl.3000180407 Huang, K., Liu, Z., Zhang, J., Li, S., Li, M., Xia, J., & Zhou, Y. (2014). Epoxy Monomers Derived from Tung Oil Fatty Acids and Its Regulable Thermosets Cured in Two Synergistic Ways. Biomacromolecules,15(3), 837-843. doi:10.1021/bm4018929 Ji, H., Wang, B., Zhang, X., & Tan, T. (2015). Synthesis of levulinic acid-based polyol ester and its influence on tribological behavior as a potential lubricant. RSC Advances,5(122), 100443-100451. doi:10.1039/c5ra14366g
    Kadafa, Adati A. (2012). Environmental Impacts of Oil Exploration in the Niger Delta of Nigeria. Global journal of Science Frontier Research Environment & Earth Sciences,4(3), 110-121.
    Karmakar, G., Ghosh, P., & Sharma, B. (2017). Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants,5(4), 44. doi:10.3390/lubricants5040044
    Klos, Marlena & Malarczyk, Kornelia & Milchert, Eugeniusz. (2014). Epoxidation of linseed oil with performic acid. Przemysl Chemiczny. 93. 14551458.
    Kobori, M., Ohnishi-Kameyama, M., Akimoto, Y., Yukizaki, C., & Yoshida, M. (2008). α-Eleostearic Acid and Its Dihydroxy Derivative Are Major ApoptosisInducing Components of Bitter Gourd. Journal of Agricultural and Food Chemistry,56(22), 10515-10520. doi:10.1021/jf8020877 Kumar, R., Tiwari, P., & Garg, S. (2013). Alkali transesterification of linseed oil for biodiesel production. Fuel,104, 553-560. doi:10.1016/j.fuel.2012.05.002 Laad, M., & Jatti, V. K. (2018). Titanium oxide nanoparticles as additives in engine oil. Journal of King Saud University - Engineering Sciences,30(2), 116122. doi:10.1016/j.jksues.2016.01.008
    Leao, J. D., Bouillon, V., Muntada, L., Johnson, C., Wilson, P., Vergnes, O., Mendoza, G. (2016). New formulations of sunflower based bio-lubricants with high oleic acid content – VOSOLUB project. Ocl,23(5), 1-8. doi:10.1051/ocl/2016033
    Liu, C., Liu, J., Ma, L., & Rong, L. (2014). Preparation of Novel HighTemperature Polyol Esters from Vegetable Oils. Journal of Chemistry,2014, 1-6. doi:10.1155/2014/802732
    Lopez Tellez, G., Vigueras-Santiago, E., Hernandez-Lopez, S. (2009). Characterization of linseed oil epoxidized at different percentages. Sociedad Mexicana de Ciencia y Technologia de Superficies y Materiales,22(1), 5-10.
    Meireles, B. A., & Pereira, V. L. (2013). Synthesis of bio-additives: Transesterification of ethyl acetate with glycerol using homogeneous or heterogeneous acid catalysts. Journal of the Brazilian Chemical Society,24(1), 1757. doi:10.1590/s0103-50532013000100004
    Michael N. (2012). Green Tribology, Biomimetics, Energy Conservation, and Sustainability. Springer-Verlag Berlin An.
    Minrui, Z., Meng, Z., Hu LI., Caiying, B.O., Yonghong, Z. (2017). Synthesis and Properties of Epoxidized Tung Oil Methyl Ester from Tung Oil Methyl Ester with Quaternary Ammonium Phosphotungstate as Catalyst. Chemistry and Industry of Forest Products,37(3), 61-66. doi:10.3969/j.issn.0253-2417.2017.03.008
    Mudhaffar, B., & Salimon, J. (2010). Epoxidation of Vegetable Oils and Fatty Acids: Catalysts, Methods and Advantages. Journal of Applied Sciences,10(15), 1545-1553. doi:10.3923/jas.2010.1545.1553 Muhammad, Q., Tariq, M. A., & Mazhar, H. (2016). Physico-chemical characteristics of Pakistani used engine oils. Journal of Petroleum Technology and Alternative Fuels,7(2), 13-17. doi:10.5897/jptaf2015.0121 Musa, I. A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum,25(1), 21-31. doi:10.1016/j.ejpe.2015.06.007
    Musa, J.J. (2009). Evaluation of the lubricating properties of palm kernel oil. Leonardo Electronic Journal of Practice and Technologies,14, 107-114.
    Nanok, J. K., Onyango, Christopher O. (2017). A socio-economic and environmental analysis of the effects of oil exploration on the local community in Lokichar, Turkana County, Kenya. International Journal of Management, Economics and Social Sciences,6(3), 144-156.
    Nehal S. A., Amal M. N. (2013). Lubrication and Lubricants. INTECH,2, 55-76.
    Neto, R. C., Lima, D. O., Pinheiro, T. D., Almeida, R. F., Dantas, T. N., Dantas, M. S., Azevedo, D. C. (2004). Thermo-Oxidative Stability of Mineral Naphthenic Insulating Oils: Combined Effect of Antioxidants and Metal Passivator. Industrial & Engineering Chemistry Research,43(23), 7428-7434. doi:10.1021/ie049645o
    Nykter, M., Kymäläinen, H., & Gates, F. (2008). Quality characteristics of edible linseed oil. Agricultural and Food Science,15(4), 402. doi:10.2137/145960606780061443 Ogundiran, M. B., & Ojo, A. S. (2012). Determination of Fat Contents, Iodine Values, Trace and Toxic Metals in Commonly Consumed Frozen Fish in Nigeria. American Journal of Food Technology,7(1), 34-42. doi:10.3923/ajft.2012.34.42 Gadhave, S. L., & Ragit, S. S. (2016). Optimization of tung oil methyl ester from transesterification process and fuel characterization as diesel substitute. International Journal Of Latest Trends In Engineering And Technology,7(2), 116-120. doi:10.21172/1.72.519 Ordinioha, B., & Brisibe, S. (2013). The human health implications of crude oil spills in the Niger delta, Nigeria: An interpretation of published studies. Nigerian Medical Journal,54(1), 10. doi:10.4103/0300-1652.108887
    Owen, N. A., Inderwildi, O. R., & King, D. A. (2010). The status of conventional world oil reserves—Hype or cause for concern?. Energy Policy,38(8), 4743-4749. doi:10.1016/j.enpol.2010.02.026
    Park, J., Kim, D., Wang, Z., Lu, P., Park, S., & Lee, J. (2007). Production and Characterization of Biodiesel from Tung Oil. Biotechnology for Fuels and Chemicals,148, 109-117. doi:10.1007/s12010-007-8082-2
    Paul, A. K., Borugadda, V. B., Bhalerao, M. S., & Goud, V. V. (2018). In situ epoxidation of waste soybean cooking oil for synthesis of biolubricant basestock: A process parameter optimization and comparison with RSM, ANN, and GA. The Canadian Journal of Chemical Engineering,96(7), 1451-1461. doi:10.1002/cjce.23091 Prasad, L., Das, L. M., & Naik, S. N. (2012). Effect of Castor Oil, Methyl and Ethyl Esters as Lubricity Enhancer for Low Lubricity Diesel Fuel (LLDF). Energy & Fuels,26(8), 5307-5315. doi:10.1021/ef300845v
    Rafiee R. M., Salimon J., Jelas M. D. H., Jahamgirian H., Shah M. H. I., Hosseini S., M. Rezayi. (2014). Lipase Epoxidation Optimizing of Jatropha Curcas Oil Using Perlauric Acid. Digest Journal of Nanomaterials and Biostructures,9(3), 1159-1169.
    Rania D. M. A., Mawahib E. M. E., Rajaa S. M. A., Marmar A. S. (2015). Comparative Studies on Physicochemical Properties and fatty Acids Composition of Seed Oil of Jatropha curcas and Jatropha glauca. International Journal of Technical Research and Applications,3(4), 407-412.
    Roegiers, M., Zhang, H., Zhmud, B. (2008). ElektrionizedTM vegetable oils as lubricity and oiliness components in the metalworking lubricants. Proc. 6th Intl. Conf. on Tribology – Balkantrib’08, Sozopo Peper BT-97,36, 133-138.
    Roy M. M., Malcolm F.F., Stefan T. O. (1994). Chemistry and Technology of Lubricants.. doi:10.1007/978-1-4615-3554-6
    S. Bilal. (2013). Production of biolubricant from Jatropha curcas seed oil. Journal of Chemical Engineering and Materials Science,4(6), 72-79. doi:10.5897/jcems2013.0164
    Salimon, J., Abdullah, B. M., & Salih, N. (2011). Optimization of the oxirane ring opening reaction in biolubricant base oil production. Arabian Journal of Chemistry,9, 1878-5352. doi:10.1016/j.arabjc.2011.11.002 Salimon, J., Abdullah, B., Yusop, R. M., & Salih, N. (2014). Synthesis, reactivity and application studies for different biolubricants. Chemistry Central Journal,8(1), 16. doi:10.1186/1752-153x-8-16
    Salimon, J., Salih, N., & Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society,15(3), 195-201. doi:10.1016/j.jscs.2010.08.004
    Sammaiah, A., Padmaja, K. V., & Prasad, R. B. (2014). Synthesis of Epoxy Jatropha Oil and its Evaluation for Lubricant Properties. Journal of Oleo Science,63(6), 637-643. doi:10.5650/jos.ess13172
    Saurabh, T., Patnaik, M., Bhagt, S. L., & Renge, V. C. (2011). Epoxidation of Vegetable Oils: A Review. International Journal of Advanced Engineering Technology,2(4), 491-501.
    Schuchardt, U., Sercheli, R., Vargas, M. R. (1997). Transesterification of Vegetable Oils: a Review. Journal of the Brazilian Chemical Society,9(1), 199210.
    Sen, Q., Yonggang, S., Xiaojuan, W., Zhenxing, L., Yunxuan, J. (2017). Synthesis of Biolubricant Trimethylolpropane Trioleate and Its Lubricant Base Oil Properties. American Chemical Society,31, 7185-7190. doi:10.1021/acs.energyfuels.7b00876
    Shagal, M. H., Barminas, J. T., Aliyu, B. A., Osemeahon S. A. (2013). Epoxidation of Ximenia americana seed oil. Journal of Petroleum Technology and Alternative Fuels,4(4), 72-77. doi:10.5897/JPTAF2013.0092
    Shang, M., Noël, T., Su, Y., & Hessel, V. (2016). Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors. AIChE Journal,63(2), 689-697. doi:10.1002/aic.15385 Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Characterization of TiO2, Al2O3 and SiO2 Nanoparticle based Cutting Fluids. Materials Today: Proceedings,3(6), 1890-1898. doi:10.1016/j.matpr.2016.04.089
    Sonntag. (1979). Composition and Characteristics of individual fats and oils. Bailey’s Industrial Oil and Fat Products. New York: John Wiley & Sons,1, 289 – 477.
    Sun, Z., Wang, H., Ye, S., Xiao, S., Liu, J., Wang, W., Wang, J. (2012). Betaeleostearic acid induce apoptosis in T24 human bladder cancer cells through reactive oxygen species (ROS)-mediated pathway. Prostaglandins & Other Lipid Mediators,99(1-2), 1-8. doi:10.1016/j.prostaglandins.2012.04.001
    Syaima, M.T.S., Zamratul, M. I. M., Noor, I. M., Rifdi, W.M.W.T. (2014). Development of bio-lubricant from Jatropha curcas oils. International Journal of Research in Chemical, Metallurgical, and Civil Enggineering,1(1), 10-12.
    Tebandeke, E., Ssekaalo, H., Wendt, F. O. (2013). Highly efficient epoxidation of olefins with hydrogen peroxide oxidant using modified silver polyoxometalate catalysts. African Journal of Pure and Applied Chemistry,7(2), 50-55. doi:10.5897/AJPAC12.060
    Ting, C. T., Chen, C. C. (2011). Viscosity and working efficiency analysis of soybean oil based bio-lubricants. Measurement,44, 1337-1341. doi:10.1016/j.measurement.2011.04.005
    Venu B., Asish K., Ajay K. (2017). Chemical/Structural Modification of Canola Oil and Canola Biodiesel: Kinetic Studies and Biodegradability of the Alkoxides. (2017). Lubricants,5(2), 11. doi:10.3390/lubricants5020011
    Wang, A., Chen, L., Jiang, D., & Yan, Z. (2013). Vegetable oil-based ionic liquid microemulsions and their potential as alternative renewable biolubricant basestocks. Industrial Crops and Products,51, 425-429. doi:10.1016/j.indcrop.2013.09.039
    Wu, X., Zhang, X., Yang, S., Chen, H., & Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists Society,77(5), 561-563. doi:10.1007/s11746-000-0089-2 Wu, Z., Nie, Y., Chen, W., Wu, L., Chen, P., Lu, M., . . . Ji, J. (2016). Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acidautocatalyzed reaction system. The Canadian Journal of Chemical Engineering,94(8), 1576-1582. doi:10.1002/cjce.22526
    Yang, C., Ger, J., & Li, C. (2008). Formic acid: A rare but deadly source of carbon monoxide poisoning. Clinical Toxicology,46(4), 287-289. doi:10.1080/15563650701378746 Zeleke, T. D. (2017). Epoxidation of Vernonia Oil in Acidic Ion Exchange Resin. American Journal of Applied Chemistry,5(1), 1. doi:10.11648/j.ajac.20170501.11 Zhang, L., Luo, Y., Hou, Z., He, Z., & Eli, W. (2013). Synthesis of Carbonated Cotton Seed Oil and Its Application as Lubricating Base Oil. Journal of the American Oil Chemists Society,91(1), 143-150. doi:10.1007/s11746-013-2358-1

    QR CODE