簡易檢索 / 詳目顯示

研究生: 陳永基
Yung-ji chen
論文名稱: 製備與鑑定高固含量二氧化矽溶膠水溶液
Preparation and Characterization of Nano-Dispersed Silica Sol Solution with High Solids Content
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 許榮木
Jung-Mu Hsu
林析右
Shi-Yow Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 157
中文關鍵詞: 奈米級二氧化矽溶膠水溶液
外文關鍵詞: nano silica sol solution
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘  要
  本研究探討如何合成均一相之奈米級二氧化矽溶膠水溶液。利用矽酸鈉為起始單體並以超純水作為溶劑,藉由強酸型陽離子交換樹脂IR120進行離子交換反應,即可得到穩定之奈米級二氧化矽溶膠水溶液。本研究另探討矽酸鈉起始量、熱處理、pH值、矽鈉比例、偶合劑與抑制劑添加量等變因的不同,對於二氧化矽溶膠之粒徑大小、分佈性、固含量及長置穩定性的影響,於濃縮製程中之固含量提升程度。並找出於最適化加入偶合劑的時機,達到最有效的利用,減少不必要浪費。
  於本研究中發現,若奈米級二氧化矽溶膠水溶液的pH值在8∼10.5範圍間,以及矽鈉比例在30∼70之間,其溶液的穩定性極佳且粒徑可維持長久時間不至於變化。而當pH值愈低並接近8時,其粒子的表面電荷愈高,矽鈉比例則會愈接近70,形成溶液較佳的穩定性與粒子的分散性,且於濃縮製程中提供其二氧化矽固含量更高的提升量,並可達到35 % ~40%的高固含量及粒徑控制在50 nm以內。


Abstract
The objective of this study is to preparing and characterizing the homogeneous aqueous of silica sol with nanoparticles. It used sodium silicate solution (water glass) as the starting monomer with the solvent of ultrapure water to proceed ion-exchange reaction by strongly acidic cation exchange resin (Amberlite® IR120), then obtained the stably nano-dispersed silica sol solution. This study also investigated such as the amount of the initiator, heat process, the pH of the aqueous silica sol, the ratio of SiO2 to Na2O and the presence of inhibitor (TMA hydroxide) and coupling agent (A187) with different variables to influence such as the particle size and distribution of aqueous silica sol, silica solid content and the stability of the long period. And then find out the best optimal process when add into coupling agent achieving efficiency. Therefore, we can derive the tendency and extent of the condensed process from these factors.
The final result showed the pH value and the ratio of SiO2 to Na2O of silica sol that in the most stable range was 8 to 10.5 and 30 to 70, as well as pH approach to 8 that acquire the maximum value of the ratio of SiO2 to Na2O and the zeta potential on the particles to constitute the stability and dispersion. The silica sol solution could be further via concentrated method to obtain the higher elevations of silica solid content that achieved at 35 % to 40% as the maximum and the particle size with less than 50 nm.

目  錄 中文摘要...........................................................i 英文摘要...........................................................ii 誌謝...............................................................iii 目錄...............................................................iv 圖目錄 ...........................................................viii 表目錄.............................................................xii 第一章  緒論  1-1 研究背景 .........................................................1  1-2 研究目的 .........................................................3 第二章 文獻回顧  2-1 奈米材料及其特性..................................................5  2-2 二氧化矽..........................................................7   2-2-1 二氧化矽溶膠水溶液的製備......................................10   2-2-2 溶膠-凝膠法與Stöber Process之介紹............................12   2-2-3 溶膠-凝膠法反應機制..........................................18 A 水解反應......................................................19 B 聚縮合反應....................................................20 C 離子交換反應..................................................21   2-2-4 溶膠-凝膠法反應之影響變因....................................22 A pH值的影響....................................................22 B 溶劑種類的影響................................................27 C 反應溫度的影響................................................28 D 水含量與起始劑比例的影響......................................29 E 誘導與立體效應的影響..........................................30   2-2-5 二氧化矽的成核及成長機制......................................32 A 均質成核與表面成長理論........................................34 B 二氧化矽溶膠水溶液的均質成核..................................35   2-2-6 膠體粒子之穩定機制............................................36 A 電雙層穩定機制(DLVO理論)....................................37 B 立體效應穩定機制..............................................40  2-3 奈米級二氧化矽溶膠水溶液的濃縮....................................44  2-4 表面改質與抑制劑..................................................47   2-4-1 矽烷偶合劑的反應機制..........................................47 A 水解反應.......................................................50 B 縮合反應.......................................................51   2-4-2 抑制劑之穩定機制..............................................52  2-5 離子交換樹脂......................................................56 第三章 實驗藥品、儀器及方法  3-1 實驗藥品..........................................................61  3-2 實驗儀器與設備備..................................................63  3-3 實驗方法..........................................................66   3-3-1 奈米級二氧化矽溶膠水溶液之製備備..............................66  3-4 奈米級二氧化矽溶膠水溶液之性質測定與分析析 .......................82   3-4-1 動態光散射粒徑分析儀(DLS)測量粒徑(ZAve, nm)及粒徑分佈(Poly. Index)..................................................................82   3-4-2 感應耦合電漿原子發射光譜儀(ICP)測定二氧化矽溶膠水溶液內矽與鈉含量之比(SiO2:Na2O).........................................................83   3-4-3 傅立葉轉換紅外線光譜分析儀(FTIR)分析奈米級二氧化矽之結構....84 第四章 結果與討論  4-1 水相奈米級二氧化矽溶膠水溶液之製備................................85  4-2 起始含量與熱處理對奈米級二氧化矽溶膠水溶液之影響..................88  4-3 pH值對奈米級二氧化矽溶膠水溶液之影響..............................96 4-4 偶合劑對奈米級二氧化矽透明溶膠之影響................................103  4-5 抑制劑對奈米級二氧化矽透明溶膠之影響..............................109  4-6 濃縮製程對奈米級二氧化矽溶膠水溶液之影響..........................115  4-7 奈米級二氧化矽溶膠水溶液之儀器測定與分析鑑定......................124   4-7-1 奈米級二氧化矽溶膠水溶液之FTIR分析............................124   4-7-2 奈米級二氧化矽溶膠水溶液之ICP分析.............................131 第五章 結論與建議事項...................................................134 參考文獻.................................................................137 圖 目 錄 圖2.1 二氧化矽的結構....................................................9 圖2.2 矽凝膠粉末於不同溫度的熱處理下之孔徑分佈圖........................16 圖2.3 加酸中和法(左)與離子交換法(右)之製程比較與濃縮後固含量之差異圖 .........................................................................18 圖2.4 水解反應與縮合反應的關係圖........................................19 圖2.5 pH值對矽酸膠溶液穩定性的影響......................................24 圖2.6 二氧化矽溶膠水溶液在不同pH下的表面電荷圖..........................26 圖2.7 二氧化矽溶膠水溶液在不同pH值下的聚合現象..........................26 圖2.8 矽烷氧化物之取代基的誘導效應......................................31 圖2.9 二氧化矽粒子之成長階段圖..........................................33 圖2.10 離子交換法中二氧化矽粒子成長與成核機制...........................33 圖2.11 均質成核與表面成長機制圖.........................................34 圖2.12 DLVO總位能曲線...................................................38 圖2.13 電雙層示意圖.....................................................40 圖2.14 (a)電雙層穩定機制 (b)立體效應穩定機制 之臨界穩定距離(VR=repulsion;VA=attraction)..........................................43 圖2.15 矽酸膠水溶液濃縮製程.............................................45 圖2.16 矽烷偶合劑於有水的狀態下之反應機制...............................48 圖2.17 矽烷偶合劑在無水狀態下之反應機制.................................49 圖2.18 A187 水解反應與pH 值的關係.......................................50 圖2.19 A187 縮合反應與pD 值的關係.......................................51 圖2.20 TMAS溶液在NMR圖譜中的六種結構....................................53 圖2.21 "Q" _"8" ^"3" 結構圖.............................................53 圖2.22 TMAS溶液中不同型態的"Q" _"8" ^"3" 結構...........................54 圖2.23 離子交換樹脂 (a)陽離子型與陰離子型之反應 (b)強酸型(H型)之結構圖 .........................................................................59 圖3.1 實驗Part A流程圖..................................................70 圖3.2 實驗Part B流程圖..................................................74 圖3.3 實驗Part D流程圖..................................................81 圖4.1 矽表面之hydroxyl groups型態 (1)水解作用發生時 (2)將水移除時 (3)矽醇基形成時.......................................................................86 圖4.2 實驗Part A雙分布明顯之粒徑分佈圖(a) A-20 (b) A-25.................89 圖4.3 A-20粒徑分佈圖(a)第0天(b)第4天(c)第6天(d)第10天...................92 圖4.4 A-20熱處理熟成溫度60℃之粒徑分佈圖(a)第0天(b)第3天................93 圖4.5 A-25粒徑分佈圖(a)第0天(b)第3天....................................93 圖4.6 A-25熱處理熟成溫度60℃之粒徑分佈圖(a)第0天(b)第3天................94 圖4.7 未經熱處理之穩定粒徑分佈圖(a)A-20第55天(b)A-25第18天..............94 圖4.8 未經熱處理之粒徑分佈圖對穩定天數之圖..............................95 圖4.9 (a) AH8P-20 (0天) (b) AH8P-20 (3天) (c) AH8+5P-20 (0天) (d) AH8+5P-20 (7天) (e) AH8P-25 (0天) (f) AH8P-25 (7天) (g) AH8+5P-25 (0天) (h) AH8+5P-25 (7天) 之粒徑分佈圖..............101 圖4.10 (a) AH8+5P-20 (b) AH8+5P-25 之第100天粒徑分布圖.................102 圖4.11 (a) 8+5P20S-20 (b) 8+5P25S-25 粒徑分布圖.......................105 圖4.12 (a)8+5P40S-20 (b)8+5P40S-25 樣品圖 (c) 8+5P40S-20 (d) 8+5P40S-25 粒徑分佈圖.....................................................................106 圖4.13 不同起始比例及偶合劑含量之長期穩定性圖.......................................................................108 圖4.14 加入抑制劑前的粒徑分佈圖(a)AH-20(b)AH-25.......................................................................111 圖4.15 實驗Part C之第1天 (a) AH25T-20 (b) AH50T-20 (c) AH75T-20 (d) AH25T-25 (e) AH50T-25 (f) AH75T-25 粒徑分佈圖.......................................................112 圖4.16 為有無添加TMAOH之長置穩定性圖....................................112 圖4.17 (a) AH75T-20 (b) AH75T-25 第44天之粒徑分佈圖....................113 圖4.18 (a) 8+5PC-20 (b) 8+5PC-25 (c) 8+5P20SC-20 (d) 8+5P25SC-25 粒徑分佈圖..........................................116 圖4.19 實驗Part D樣品添加抑制劑一天後(a) 8+5PC25T-20% (b) 8+5PC25S-20% (c) 8+5P20SC25T -20% (d) 8+5PC25T-25% (e) 8+5PC25S-25% (f) 8+5P25SC25T -25% 之粒徑分佈圖.................................................................120 圖4.20 實驗Part D樣品添加抑制劑和偶合劑後之長置粒徑穩定圖(a) 起始劑為20% (b) 起始劑為 25%...............................................................121 圖4.21 奈米級二氧化矽溶膠水溶液之FTIR光譜圖.......................................................................125 圖4.22 為A-187與8+5PS之FTIR光譜圖.......................................................................127 圖4.23 二氧化矽溶膠各製程之FTIR光譜比較圖.......................................................................128 圖4.24 樣品 AH8+5P20SCT-20之TEM圖(Z_(AVE )=35.3;PDI=0.499).............133 圖4.25 樣品 AH8+5P25SCT-25之TEM圖(Z_(AVE )=40.7;PDI=0.447 )............133 表 目 錄 表2.1 二氧化矽粒子之製備方法............................................11 表2.2 火焰合成法之原料及特點............................................11 表2.3 Stöber process實驗配方與二氧化矽實驗數據..........................14 表2.4 溶膠-凝膠法中較常使用的溶劑及其物性..............................28 表2.5 矽酸膠水溶液濃縮製程的比較........................................46 表2.6 離子交換樹脂對離子選擇性之大小....................................60 表2.7 離子交換樹脂之再生劑選擇..........................................60 表3.1 實驗Part A配方表..................................................69 表3.2 實驗Part B配方表..................................................73 表3.3 實驗Part C1配方表(以25%為例)......................................77 表3.4 實驗Part C2配方表(以25%為例)......................................77 表3.5 實驗Part D配方表..................................................80 表4.1 實驗Part A樣品雙分布顯著時的基本性質..............................88 表4.2 實驗Part A樣品熱處理後之基本性質..................................91 表4.3 實驗Part A樣品未經熱處理之基本性質................................95 表4.4 實驗Part B樣品之基本性質..........................................98 表4.5 實驗Part B樣品之矽鈉比............................................99 表4.6 實驗Part C之基本性質..............................................103 表4.7 實驗Part D樣品之矽鈉比............................................107 表4.8 實驗Part C樣品之基本性質..........................................109 表4.9 實驗Part D樣品之基本性質..........................................117 表4.10 實驗Part D樣品之添加抑制劑後之基本性質............................117 表4.11 實驗Part D樣品之矽鈉比............................................123 表4.12 奈米級二氧化矽溶膠水溶液之FTIR光譜分析............................125 表4.13 A-187 之FTIR 光譜分析.............................................127 表4.14 8+5PS之FTIR 光譜分析..............................................128 表4.15 各樣品之FTIR光譜特性峰............................................129 表4.16 實驗Part C樣品之矽鈉比............................................131

參考文獻
1.A. Yoshida, Advance in chemistry series. 234, 51 (1994)
2.E. P. Moore, U. S. patent. 3956171 (1976)
3.M. R. Joseph, and O. Cleneland, U. S. patent. 2577485 (1951)
4.H. W. Swofford, U. S. patent. 4822828 (1989).
5.M. Guest, M. W. Preus, and W. Lewis, U. S. patent. 5013608 (1991)
6.M. Guest, M. W. Preus, and W. Lewis, U. S. patent. 5102695 (1992)
7.Y. Chevallier, Decines, and France U. S. patent. 5066420 (1991)
8.F. Lin, Thin solid films. 347, 248 (1999)
9.黃啟華,碩士論文,國立台灣科技大學化學工程研究所,2007。
10.W. Stöber, A. Fink, and E. Bohn, Journal of Colloid and Interface 26, 62 (1968)
11.E. Pere, H. Cardy, V. Latour, and S. Lacombe, Journal of Colloid and Interface Science. 281, 410 (2005)
12.T. G. Waddel, D. E. Leyden, and M. T. Debello, Journal of American Chemical Society. 103, 5303 (1981)
13.Malsch, Nanotechnology. 10, 1 (1999)
14.M. Boutonnet, J. Kizling, V. M. Eya, A. Choplin, R. Touroude, G. Maire, and P.Stenius, Journal of Cataluysis, 103, 95 (1987)
15.莊萬發,超微粒子理論應用,臺南:復漢 (1998)。
16.蘇品書,超微粒子材料技術,臺南:復漢 (1998)。
17.蔡宏欣,碩士論文,國立台灣大學材料科學與工程研究所,2002。
18.史宗淮,化工,第42 卷第6 期,28,1995。
19.汪建民,陶瓷技術手冊(上),27,1993。
20.J. Adams, T. Baird, P. S. Braterman, J. A. Cairns, and D. L. Segal, Better Ceramics through Chemistry III. 361, Pittsburgh (1988)
21.J. Brinker, and G. W. Scherer, Academic press. Boston (1990)
22.J. T. Landry, B. K. Coltrain, J.A. Wesson, N. Zumbulyadis, and J. L. Lippert, Polymer. 33, 1496 (1992)
23.J. T. Landry, B. K. Coltrain, and B. K. Brady, Polymer. 33, 1486 (1992)
24.G. Cerveau, R. J. P. Corriu, and E. Framery, Journal of materials chemistry. 10, 1617 (2000)
25.S. Coenen, and C. G. DE Kruif, Journal of Colloid and Interface Science. 124, 104 (1988)
26.E. Sada, H. Kumazawa, and E. Koresawa, Journal of The Chemical Engineering. 44, 133 (1990)
27.Z. j. Li, C. r. Liu, and Q. s. Zhao, Journal of Non-Crystalline Solids. 265, 189 (2000)
28.P. G. Bird, U. S. patent. 2244325 (1940)
29.D. Lasic, Colloids and Surfaces. 20, 265 (1986)
30.詹混凱,碩士論文,國立成功大學化學工程研究所,1998。
31.工業技術研究院,化工資訊與商情,11月號第41期, 2006。
32.R. A. Asink, and B. D. Kay, Journal of Non-Crystalline Solids. 99, 359 (1988)
33.R. K. Iler, The Chemistry of Silica. Wiley, New York (1979)
34.Y. K. Lee, Y. R. Yoon, and H. K. Rhee, Colloid and Surfaces A. 173, 109 (2000)
35.R. Winter, J. B. Chan, R. Frattini, and J. Jonas, Journal of Non-Crystalline Solids. 105, 214 (1988)
36.M. J. Burke, and A. Nobel Inc., U. S. patent. 0113462 (2005)
37.M. S. Tsai, Materials Science and Engineering. 106, 52 (2004)
38.L. Daniela, R. Wangner, V. Vanderley, and L. Wander, Materials Science and Engineering. 334, 53 (2002)
39.L. Kepinski, D. Hreniak, and W. Strek, Journal of Alloys and Compounds. 341, 203 (2002)
40.C. J. Brinker, Journal of Non-Crystalline Solids. 100, 30 (1988)
41.周更生,陳貞志,化工年會,2003。
42.R. Terry, Academic Press. Boston (1996)
43.D. Myers, Surface, Interface, and Colloids. Wiley-VCH, New York (1991)
44.戴怡德,陳寶祺,化工,第 46卷第2 期,43,1999。
45.H. K. Schmidt, Journal of Sol-Gel Science and Technology. 8, 557 (1997)
46.K. C. Vrancken, P. V. Voort, K. Possemiers, and E. F. Vansant, Journal of Colloids and Surfaces. 98, 235 (1995)
47.B. Arkles, CHEMTECH. 7, 766 (1977)
48.D. Y. Kim, H. Du, and D. W. Johnson Jr., Journal of the American Ceramic Society. 87, 1789 (2004)
49.R. K. Harris, and C. T. G. Knight, Journal of Molecular structure. 78, 273 (1982)
50.S. D. Kinrade, J. C. H. Donovan, A. S. Schach, and C. T. G. Knight, Journal of the Chemical Society. 7, 1250, Canada (2002)
51.P.W.J.G. WIJNEN, T.P.M. BEELEN, J.W. DEHAAN, L.J.M. VAN DE VEN, and R.A. VAN SANTEN, Colloids and Surfaces. 45, 255 (1990)
52.S. D. Kinrade, C. T. G. Knight, D. L. Pole, and R. T. Syvitski, Inorganic Chemistry. 37, 4272 (1998)
53.J. C. J. Van Der Donck, and H. N. Stein, Langmuir. 9, 2276 (1993)
54.三菱化學株式會社,DIAION離子交換樹脂&合成吸附劑技術手冊Ι,9,2001。
55.楊岳軍,重金屬廢水處理技術研討會,工研院化工所,1989。
56.W. C. Bauman, and J. Eichhorn, Journal of American Chemical Society. 69, 2830 (1947)
57.C. J. Brinker, G. W. Scherer, “Sol-Gel Science”,(1992)
58.T. Horr and G. D. Reynolds, Journal of Adhesion Science and Technology .11, 995- 1009. (1997)
59.D. D. Lasic, Colloids and Surfaces. 20, 265 (1986)
60.R. K. Sharma, Journal of Colloid and Interface Science. 277, 342 (2004)
61.J. OSSWALD, and K. T. FEHR, Journal of Material Science. 41, 1335 (2006)
62.Vinogradova, M. Estrada, and A. Moreno, Journal of Colloid and Interface Science. 298, 209 (2006)
63.P. J. Launer, Infrared analysis of organosilicon compounds: spectra-structure correlations. Burnt Hills, New York (1987)
64.廖克綸,碩士論文,國立台灣科技大學化學工程研究所,2011

無法下載圖示 全文公開日期 2017/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE