簡易檢索 / 詳目顯示

研究生: 蔡宗穎
Tsung-ying Tasi
論文名稱: 利用有機金屬化學氣相沉積法成長二氧化釕奈米結構與場發特性分析
Growth of RuO2 Nanostructures via Metalorganic Chemical Vapor Deposition and Field Emission Properties Analysis
指導教授: 黃鶯聲
Ying-sheng Huang
口試委員: 孫澄源
Cheng-yuan Sun
蔡大翔
Dah-shyang Tsai
樂錦盛
Chin-sheng Ro
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 46
中文關鍵詞: 氧化釕有機金屬化學氣相沉積法奈米柱奈米管場發射
外文關鍵詞: RuO2, MOCVD, nanorod, nanotube, field emision
相關次數: 點閱:333下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

使用[(CH3CH2)C5H4]2Ru當前驅物,於冷壁式有機金屬化學氣相沉積系統中成長二氧化釕奈米結構,其沉積在不同平面之基板上有不同的成長方向。使用場發射掃描式電子顯微鏡、X光繞射譜線,對二氧化釕奈米結構做結構的分析。從FESEM照片觀察在不同的基板上,其奈米柱有垂直、傾斜的成長形式。此外,探討二氧化釕奈米結構之場發射特性,包括不同長度、不同形貌和不同密度。對不同長度這個因素而言,我們利用四種不同長度的奈米柱(不同長度的奈米柱,其形貌和密度差不多)做場發射的量測,得到的結果是:當奈米柱長度為1.5μm時,其驅動電壓(Ethr)、啟動電壓(Eto)最低及 值(場發射加強常數)最高。我們認為是其高寬比(aspect ratio)最高的原因。對不同形貌而言,我們也利用四種不同形貌的奈米結構做場發射的量測,得到的結果是:形貌為奈米線時,其驅動電壓(Ethr)、啟動電壓(Eto)最低及 值(場發射加強常數)最高。我們歸究其原因在於其奈米線的尺寸較小,造成其局部分佈電場在尖端比其他形貌強,所以場發效果較好,最後,我們也利用MOCVD 成功成長三種不同密度的奈米線,我們也利用這三種不同密度的奈米線做場發射,我們也發現:高密度的奈米線其驅動電壓(Ethr)、啟動電壓(Eto)最高及 值(場發射加強常數)最低,因為高密度的奈米線代表著兩兩發射器的距離比較短,而兩兩發射器的距離比較短會互相影響其尖端的局部分佈電場,造成尖端的局部電場減弱,而有電子屏壁效應的效果。最後我們認為分析這些結果在使用RuO2奈米結構當場發元件是有價值的。


The self-assembled and well-aligned ruthenium dioxide (RuO2) nanostructures (NS), using [(CH3CH2)C5H4]2Ru as the precursor, have been grown on various substrates with different orientations via the technique of cold-wall metalorganic chemical vapor deposition (MOCVD). The conditions for the one-dimensional growth of RuO2 NS, including nanorods (NRs), nanotubes (NTs), nanowires (NWs), and nanotips are studied and the probable mechanisms of the formation of 1-D NS are discussed.
The surface morphology and structure of the as-grown NS were characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD). XRD patterns and FESEM images show vertical or tilted alignment of NS on various substrates. In addition, we also have studied the field-emission (FE) properties of the RuO2 NS with different length, morphology and density. It was found that the length of the RuO2 NS has considerable effect on their FE properties, especially the turn-on field (Eto), threshold field (Ethr) and field-enhancement factor ( ). Among four different lengths (similar morphology and density), the NRs with l=1.5μm have the lowest Eto and Ethr and largest field-enhancement factor ( ). The superior performance is attributed to the highest aspect ratio. Among different morphologies, the RuO2 NWs having a lowest Eto and Ethr and the larger field-enhancement factor ( ) can be due to the small emitter radius of the NS. High NW density remarkably reduces the local field at the emitters owing to the screening effect, which is related to the density of the emitters. The analysis results could be valuable for the application of field-emission-based devices using RuO2 nanostructures as cathode materials.

中文摘要----- Ⅰ 英文摘要 III 誌謝 V 目 錄 VI 圖 索 引 VIII 表 索 引 XI 第一章 緒論 1 1-1 二氧化釕 1 1-2 奈米結構研究動機 3 第二章 實驗方法與步驟 5 2-1 樣品製備 5 2-1-1 實驗藥品及規格 5 2-1-2 二氧化釕化學氣相沉積設備 6 2-1-3 二氧化釕奈米結構沉積步驟 8 2-2 特性分析方法 9 第三章 結果與討論 12 3-1 利用氧化物單晶基板成長單方向性之二氧化釕奈米結構 11 3-1-1 FESEM形貌分析 11 3-1-2 XRD結構分析 16 3-2 利用奈米結構做場發之分析結果與討論 19 3-2-1 場發射基本原理 19 3-2-2 利用不同長度奈米結構做場發之結果分析 22 3-2-3 利用不同形貌奈米結構做場發之結果分析 27 3-2-4 利用不同密度奈米線做場發之結果分析 32 第四章 結論 38 參考文獻 39 作者簡介 46

1. JCPDS card no. 21-1172, International Centre for Diffraction Data, Newtown Square, PA, USA.
2. Ryden, W. D., A. W. Lawson, and C. C. Sartain, “ Electrical Transport Properties of IrO2 and RuO2”, Phys. Rev. B, Vol.1, No.4, pp.1494-1500 (1970).
3. Krusin-Elbaum, L., M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol.50, No.26, pp.1879-1881 (1987).
4. Green, M. L., M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc., Vol.132, No.11, pp.2677-2685 (1985).
5. Vadimsky, R. G., R. P. Frankenthal, and D. E. Thompson, “Ru and RuO2 as Electrical Contact Materials: Preparation and Environmental Interactions”, J. Electrochem. Soc., Vol. 126, No.11, pp.2017-2023 (1979).
6. Kolawa, E., F. C. T. So, E. T-S. Pan, and M-A. Nicolet, “Reactively Sputtered RuO2 Diffusion Barriers”, Appl. Phys. Lett., Vol. 50, No.13, pp.854-855 (1987).
7. Belkind, A., Z. Orban, J. L. Vossen, and J. A. Woolban, “Optical Properties of RuO2 Films Deposited by Reactive Sputtering”, Thin Solid Films, Vol.207, No.1-2, pp.242-247 (1992).
8. Wittmer, M., “Barrier Layers: Principles and Applications in Microelectronics”, J. Vac. Sci. Technol. A, Vol.2, No.2, pp.273-280 (1984).
9. Jia, Q. X., and W. A. Anderson, “Sputter Deposition of Yba2Cu3O7-x Films on Si at 500 oC with Conducting Metallic Oxide as a Buffer Layer”, Appl. Phys. Lett. Vol.57, No.3, pp.304-306 (1990).
10. Jia, Q. X., and W. A. Anderson, “Conducting Metallic Oxide Contacts on Superconducting YBa2Cu3O7-x Thin Films”, IEEE Trans. Compon. Hybrids Manuf. Technol. Vol.15, No.1, pp.121-125 (1992).
11. Bursill, L. A., M. Reaney, D. P. Vijay, and S. B. Desu, “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes”, J. Appl. Phys., Vol.75, No.3, pp.1521-1525 (1994).
12. Al-Shareef, H. N., K. R. Bellur, A. I. Kingon, and O. Auciello, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb (Zr0.53Ti0.47)O3/RuO2 Capacitor Heterostructures”, Appl. Phys. Lett., Vol.66, No.2, pp.239-241 (1995).
13. Takemura, K., T. Sakuma, and Y. Miyasada, “High Dielectric Constant (Ba,Sr)TiO3 Thin Films Prepared on RuO2/Sapphire”, Appl. Phys. Lett., Vol.64, No.22, pp.2967-2969 (1994).
14. Lee, J. G., S. K. Min, and S. H. Choh, “Deposition and Properties of Reactively Sputtered Ruthenium Dioxide Thin Films as an Electrode for Ferroelectric Capacitors”, Jpn. J. Appl. Phys., Vol.33, No.12B, pp.7080-7085 (1994).
15. Bernstein, S. D., T. Y. Wong, Y. Y. Kisler, and R. W. Tustison, “Fatigue of Ferroelectric PbZrxTiyO3 Capacitors with Ru and RuOx electrodes”, J. Mater. Res., Vol.8, No.1, pp.12-13 (1993).
16. Jia, Q. X., L. H. Chang, and W. A. Anderson, “Surface and Interface Properties of Ferroelectric BaTiO3 Thin Films on Si using RuO2 as an Electrode”, J. Mater. Res., Vol.9, No.10, pp.2561-2565 (1994).
17. Morales, A. M., and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, Vol.279, No.5348, pp.208-211 (1998).
18. Wang, N., Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-Enhanced Synthesis of Si Nanowires by Laser Ablation”, Appl. Phys. Lett. Vol.73, No.26, pp.3902-3904 (1998).
19. Shi, W. S., Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires”, Appl. Phys. Lett., Vol.78, No.21, pp.3304-3306 (2001).
20. Wang, J., M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires”, Science, Vol.293, No.5534, pp.1455-1457 (2001).
21. Kim, H. M., D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, “Growth of GaN Nanorods by a Hydride Vapor Phase Epitaxy Method”, Adv. Mater., Vol.14, No.13-14, pp.991-993 (2002).
22. Chen, C. C., and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires”, Adv. Mater., Vol.12, No.10, pp.738-741 (2000).
23. Huang, M. H., S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and Y. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, Vol.292, No.5523, pp.1897-1899 (2001).
24. Huang, M. H., Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., Vol.13, No.2, pp.113-116 (2001).
25. Wu, J. J., and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. Vol.14, No.3, pp.215-218 (2002).
26. Wu, J. J., and S. C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, Vol.106, No.37, pp.9546-9551 (2002).
27. Yang, P., and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathyway to Materials with High Critical Current Densities”, Science, Vol.273, No.5283, pp.1836-1840 (1996).
28. Zhu, Y. Q., W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, “SiC-SiOx Heterojunctions in Nanowires”, J. Mater. Chem., Vol.9, No.12, pp.3173-3178 (1999).
29. Bai, Z. G., D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, “Nano-Scale GeO2 Wires Synthesized by Physical Evaporation”, Chem. Phys. Lett., Vol.303, No.3-4, pp.311-314 (1999).
30. Choi, Y. C., W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge”, Adv. Mater., Vol.12, No.10, pp.746-750 (2000).
31. Chen, R. S., Y. S. Huang, Y. M. Liang, D. S. Tsai, and K. K. Tiong, “Field Emission from Vertically Aligned Conductive IrO2 Nanorods”, Appl. Phys. Lett., Vol.84, No.9, pp.1552-1554 (2004).
32. Chen, R. S., Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, and J. J. Kai, “Growth Control and Characterization of Vertically Aligned IrO2 Nanorods”, J. Mater. Chem., Vol.13, No.10, pp.2525-2529 (2003).
33. Tomkiewicz, M., Y. S. Huang, and F. H. Pollak, “The Potential of Zero Charge of Oriented Single-Crystal RuO2 in Aqueous Electrolytes”, J. Electrochem. Soc. ,Vol.130, No.7, pp.1514-1518 (1983).
34. Chalamala, B. R., Y. Wei, R. H. Reuss, S. Aggarwal, B. E. Gnade, R. Ramesh, J. M. Bernhard, E. D. Sosa, and D. E. Golden, “Effect of Growth Conditions on Surface Morphology and Photoelectric Work Function Characteristics of Iridium Oxide Thin Films”, Appl. Phys. Lett., Vol.74, No.10, pp.1394-1396 (1999).
35. Cha, S. Y. and H. C. Lee, “Deoxidization of Iridium Oxide Thin Film”, Jpn. J. Appl. Phys., Part 2, Vol. 38, No.10A, pp.L1128-L1130 (1999).
36. Chen, R. S., Y. S. Huang, Y. L. Chen, and Y. Chi, “Preparation and Characterization of RuO2 Thin Films from Ru(CO)2(tmhd)2 by Metalorganic Chemical Vapor Deposition”, Thin Solid Films, Vol.413 , No.1-2, pp.85-91 (2002).
37. JCPDS card no. 29-0836, International Centre for Diffraction Data, Newtown Square, PA, USA.
38. JCPDS card no. 10-0173, International Centre for Diffraction Data, Newtown Square, PA, USA.
39. JCPDS card no. 20-0631, International Centre for Diffraction Data, Newtown Square, PA, USA.
40. Givargizov, E. I., “Ultrasharp Tips for Field Emission Applications Prepared by the Vapor-Liquid-Solid Growth Technique”, J. Vac. Sci. Technol. B, Vol.11, No.2, pp.449-453 (1993).
41. Wu, J. J. and S. C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, Vol.106, No.37, pp.9546-9551 (2002).
42. Temple, D., “Recent Progress in Field Emitter Array Development for High Performance Applications”, Mater. Sci. Eng. R, Vol.24, No.5, pp.185-239 (1999).
43. S. H. Jo , Y. Tu , Z. P. Hung , D. L. Carnahan, D. Z. Wang and Z. F. Ren, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties” Appl. Phys. Lett., Vol.82, No.20, pp.3520-3522 (2003)
44. Bonard, J. M., F. Maier, T. Stockli, A. Chatelain, W. A. de Heer, J. P. Salvetat, and L. Forro, “Field Emission Properties of Multiwalled Carbon Nanotubes”, Ultramicroscopy , Vol.73, No.1-4, pp.7-15 (1998).
45. Bonard, J. M., J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, and A. Chatelain, “Field Emission from Single-Wall Carbon Nanotube Films”, Appl. Phys. Lett., Vol.73, No.7, pp.918-920 (1998).
46. Tarntair, F. G., C. Y. Wen, L. C. Chen, J. J. Wu, K. H. chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong, and H. C. Cheng, “Field Emission from Quasi-Aligned SiCN Nanorods”, Appl. Phys. Lett., Vol.76, No.18, pp.2630-2632 (2000).
47. J. M. Bonard,N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain “Turning the Field Emission Properties of Patterned Carbon Nanotube Films”,Adv. Mater., Vol.13, No.3, pp.184-188(2001).
48. M. C.-C. Lin, H. J. Lai, M. S. Lai, M. H. Yang, and A. K. Li , “Characterization of Field Emiss From Carbon Nanotubes Synthesized From Different Sources”, Mater.Phys. Mech. 4, (2001). pp.138-142
49. C. L. Cheng, Y.F. Cheng ,R. S. Cheng and Y. S. Huang , “Raman scattering and field–emission properties of RuO2 nanorods”, Appl. Phys. Lett., Vol.86, pp.103104-1-103104-3 (2005).
50. F. G. Tarntair, C. Y. Wen , L. C. Chen, J-J. Wu, K. H. Chen, P. F. Kuo,
S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Cheng, “Field emission from quasi-aligned SiCN nanorods” Appl. Phys. Lett., Vol.78,
No.18 pp.2630-2632 (2000).
51. S. Johnson, A. Markwitz, M. Rudolphi, H. Baumanm, S. P. Oei, K. B. K. Teo, and W. I. Milne “Field emission properties of self-assembled silicon nanostructures on n- and p-type silicon” Appl. Phys. Lett., Vol.85, No.14 pp.1-3 (2004)

QR CODE