簡易檢索 / 詳目顯示

研究生: 蕭智文
Jhih-wun Siao
論文名稱: 超高分子量聚乙烯/細菌纖維素複合纖維超高延伸性質之研究
Investigation of Ultradrawing Properties of Ultra-high Molecular Weight Polyethylene/Bacterial Cellulose Composite Fibers
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 邱士軒
Shih-hsuan Chiu
陳幹男
Kan-nan Chen
黃繼遠
Chi-yuan Huang
吳進三
Chin-san Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 超高分子量聚乙烯細菌纖維素超高延伸性質
外文關鍵詞: UHMWPE, Bacterial Cellulose, Ultradrawing Properties
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對細菌纖維素(Bacterial Cellulose, BC)及改質細菌纖維素(modified bacterial cellulose, MBC)含量對超高分子量聚乙烯(ultrahigh molecular weight polyetheylenes, UHMWPE)/BC(F2BCx)及UHMWPE/MBC(F100MBCx-y)初絲樣品的可延伸性質作一有系統性探討。F100MBCx-y初絲樣品的可延伸比(Dra)數值隨改質細菌纖維素添加量增加達到0.0625 phr最適化值時達到最大值。值得注意的是,F100MBC3-y初絲系列樣品的Dra數值隨改質細菌纖維素內PEg-MAH/細菌纖維素質量比為最適化10:1時,其Dra數值達到另一最大數值346.8 。經延伸相同倍率的F100MBCx-y纖維系列樣品,其順向度(fo)數值隨其內改質細菌纖維素含量達最適化0.0625 phr添加量時,其對應的fo數值均達到最大值。值得注意的是當PEg-MAH/細菌纖維素質量比達最適化10:1時,F100MBC3-y延伸纖維樣品的fo值均較其他其它對應的F100MBCx-y纖維系列樣品為高。抗張性能研究表明,當加入最適量的改質細菌纖維素,延伸後的纖維樣品F100MBCx-y都能獲得優異的抗張性能。為了瞭解上述這些有趣的現象,本研究中對改質細菌纖維素的表面型態, 紅外光譜與比表面積進行分析, 另亦對初絲或延伸纖維樣品的DSC熱學, 順向度和抗張性質進行研究。


    Systemic investigation of the influence of the bacterial cellulose (BC) and modified bacterial cellulose (MBC) contents on the ultradrawing properties of ultrahigh molecular weight polyethylene (UHMWPE)/BC (F100BCx) and UHMWPE/MBC (F100MBCx-y) as-prepared fibers are reported. When the mass ratio of PEg-MAH/BC was 10:1, the maximal specific surface areas of the MBC reaches around 439.7 m2/g. After incorporation of MBC in UHMWPE, the Tm (or lc) and Xc values of F100MBCx-y as-prepared fiber series specimens reduce and increase significantly, respectively, as their MBC contents increase. Moreover, it is worth noting that F100MBCx-y as-prepared fiber series specimens exhibits the lowest Tm(or lc) but the highest Xc values with the fixed MBC contents and the msaa ratio of PEg-MAH/BC increaseing to 10:1 optimal value. The Dra values of each F100MBCx-y as-prepared fiber series specimens reach a maximal value as their MBC contents approach a lower optimum value at 0.0625 phr. Moreover, it is worth noting that the maximum Dra values of the F100MBCx-0.0625 as-prepared fiber specimens reached another maximum value at 346.8 as their mass ratio of PEg-MAH/BC was 10:1. The fo values of drawn F100MBCx-y fiber specimens with the same draw ratios reach a maximum value as their MBC contents approach the optimum values at 0.0625 phr. It is worth to note that the fo values of drawn F100MBC3-0.0625 fiber specimens are higher than those of the corresponding F100MBCx-0.0625 fiber specimens as the mass ratio of PEg-MAH/BC approach the optimum value at 10:1. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn F100MBCx-y fibers can be obtained by ultradrawing the fibers prepared at their optimum MBC contents. To understand the interesting orientation, ultradrawing and tensile properties of F100MBCx-y fiber specimens, elemental and morphological analysis, specific surface areas, FTIR, thermal properties of the as-prepared fibers, orientation factor, achievable draw ratios and tensile properties of the BC and MBC were performed in this study.

    目 錄 論文摘要 II ABSTRACT IV 目錄 VI 圖表索引 IX 第一章 前言 2 第二章文獻回顧 18 2.1 聚乙烯簡介 18 2.2 高強力聚乙烯纖維 19 2.2.1 高強力聚乙烯纖維之製造技術 19 2.2.1.1 固態擠出法(solid state extrusion) 19 2.2.1.2 超延伸法(ultradrawing) 20 2.2.1.3 區域延伸法(zone drawing) 21 2.2.1.4 表面成長法(surface growth method) 22 2.2.1.5 凝膠紡絲法(gel spinning) 24 2.2.2 UHMWPE使用凝膠紡絲技術得到高強力纖維的原因 25 2.2.3 UHMWPE凝膠紡絲的技術要點 26 2.3 熱拉伸對凝膠原絲形態和結構的影響 28 2.3.1 型態和力學性質 28 2.3.2 熱性能 28 2.3.3 聚集態結構 28 2.4 纖維素 30 2.4.1 純化纖維素傳統前處理製程 32 2.4.2 細菌纖維素 33 2.4.3 細菌纖維素的生物合成及性質 ..33 第三章 實驗 36 3.1 UHMWPE/細菌纖維素凝膠纖維的製備 36 3.1.1 細菌纖維素培養製備 36 3.1.2 改質細菌纖維素製備 36 3.1.3 凝膠溶液的製備 38 3.1.4 凝膠紡絲條件與流程 38 3.2 紅外光譜測試 43 3.3 粒徑分析測試 43 3.4 凝膠纖維表面型態及熱學性質分析 44 3.5 凝膠纖維熱延伸性質之測定 45 3.6 纖維分子順向度分析 46 3.7 凝膠纖維抗張性質分析 46 第四章 結果與討論 47 4.1 細菌纖維素(BC)與改質細菌纖維素(MBC)樣品之表面型態分析 47 4.2 BC及MBC樣品紅外光譜分析 49 4.3 BC與MBC樣品比表面積分析 51 4.4 UHMWPE, UHMWPE/BC及UHMWPE/MBC初絲樣品之熱學性質分析 53 4.5 UHMWPE, UHMWPE/BC及UHMWPE/MBC初絲樣品之可延伸性質 57 4.6 UHMWPE, UHMWPE/BC及UHMWPE/MBC纖維樣品順向度分析 59 4.7 UHMWPE, UHMWPE/BC及UHMWPE/MBC初絲樣品抗張性質 62 第五章 結論 65 參考文獻 67 附錄 72

    參考文獻
    1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
    2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
    3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
    4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070 (1981).
    5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
    6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
    7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
    8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
    9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
    10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
    11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
    12. A. E. Zacharrriades and R. S. Porter, Ed., "The Strength and Stiffness of Polymer", Marcel Dekker, Inc., New Tork (1983).
    13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
    14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
    15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31,868 (1982).
    16. M. Mihailov and L. Minkova, Coll. & Polym. Sci., 265, 681 (1987).
    17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
    18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys., 197, 3531 (1996).
    19. J. T. Yeh and H. C. Wu, Polym. J., 30, 1 (1998).
    20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 70, 149 (1998).
    21. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
    22. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
    23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
    24. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
    25. J. T. Yeh, Y. T. Lin and H. B. Jiang, J. Appl. Polym. Sci., 90, 1559 (2003)
    26. J. T. Yeh, S. C. Lin, K. S. Huang and K. N. Chen, J. Appl. Polym. Sci., 110, 2538 (2008).
    27. J. T. Yeh, Y. C. Lai, H. Liu, Polym. Int., 60, 59 (2011).
    28. R. Andrew, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Appl. Polym. Sci., 75, 1329 (1999).
    29. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, J. Appl. Polym. Sci., 76, 2868 (2000).
    30. V. Lordi, N. Yao, J. Phys. Chem., 15, 2770 (2000).
    31. H. D. Wagner, O. Lourie, Y. Feldmen, R. Tenne, J. Appl. Polym. Sci., 72, 188 (1998).
    32. B. Vigolo and P. Poulin, Applied Physics Letters, 81, 1210 (2002).
    33. A. B. Dalton, S. Collins, E.. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim and R. H. Baughman, Nature. 423, 703 (2003).
    34. J. P. Salvetat, J. M. Bonard, R. R. Bacsa, A. J. Kulk, T. Stock, J. Appl. Polym. Sci., 82, 9447 (1999).
    35. M. S. P. Shaffer, A. H. Windle, Advanced Materials, 11, 93741 (1999).
    36. L. Jin, C. Bower, O. Zhou, J. Appl. Polym. Sci., 73, 1197 (1998).
    37. J. T. Yeh, T. W. Wu, Y. C. Lai, Q. C. Li, H. P. Zhou, Q. Zhou, Y. C. Shu, C.Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 2552 (2011).
    38. J. T. Yeh, T. W. Wu, Y. C. Lai, H. P. Zhou, Q. Zhou, Q. C. Li, S. Wen, C. Y. Huang, K. S. Huang and K. N. Chen, Polym. Eng. Sci., 51, 687 (2011).
    39. J. T Yeh, C. K. Wang, Q. Zhou, H. P. Zhou, Y. C. Lai, C. Y. Huang, and K. N. Chen, Ultradrawing Properties of “Ultra-highMolecular Weight Polyethylene Fibers Prepared Using Conical Dies with Varying Dimensions” Polym. Eng. Sci., submitted for publication.
    40. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Phys. Chem., 330, 219 (2000).
    41. J. C. Kearns, R. L. Shambaugh, J. Appl. Polym. Sci., 86, 2079(2002).
    42. T.Ohta, Polym. Eng. Sci., 13, 697 (1983).
    43. S. L. Ruana, P. Gaob, X.G. Yangb, T.X. Yu, Polymer, 44, 5643 (2003).
    44. J. T. Yeh, F. J. Yu-Chou, L. C. Yo, C. P. Yo, K. N. Chen and Y. C. Lai, “超高分子量聚乙烯/奈米無機物複合材料及其高性能纖維製造方法”, ROC Patents, submitted.
    45. J. T. Yeh, F. J. Yu-Chou, L. C. Yo, C. P. Yo, K. N. Chen and Y. C. Lai, “超高分子量聚乙烯/奈米無機物複合材料及其高性能纖維製造方法”, PRC Patents, submitted.
    46. J. T. Yeh, F. J. Yu-Chou, L. C. Yo, C. P. Yo, K. N. Chen and Y. C. Lai, “超高分子量聚乙烯/奈米無機物複合材料及其高性能纖維製造方法”, USA Patents, submitted.
    47. J. T. Yeh, F. J. Yu-Chou, L. C. Yo, C. P. Yo, K. N. Chen and Y. C. Lai, “超高分子量聚乙烯/奈米無機物複合材料及其高性能纖維製造方法”, Japan Patents, submitted.
    48. J. T. Yeh, F. J. Yu-Chou, L. C. Yo, C. P. Yo, K. N. Chen and Y. C. Lai, “超高分子量聚乙烯/奈米無機物複合材料及其高性能纖維製造方法”, Euro Patents, submitted.
    49. J. T. Yeh, M. S. Hu, K. N. Chen, C. C. Wang, C. Y. Huang and K. W. Lu, “乙烯製品的染色方法”, ROC Patents, submitted.
    50. J. T. Yeh, K. N. Chen, C. H. Tsou and J. W. Tang, “聚醯胺與聚烯烴之深染製程”, ROC Patents, submitted.
    51. J. T. Yeh, K. N. Chen, C. H. Tsou and J. W. Tang, “聚醯胺與聚烯烴之深染製程”, PRC Patents, submitted.
    52. J. T. Yeh, K. N. Chen, C. H. Tsou and J. W. Tang, “聚醯胺與聚烯烴之深染製程”, USA Patents, submitted.
    53. J. T. Yeh, K. N. Chen, C. H. Tsou and J. W. Tang, “聚醯胺與聚烯烴之深染製程”, Japan Patents, submitted.
    54. J. T. Yeh, K. N. Chen, C. H. Tsou and J. W. Tang, “聚醯胺與聚烯烴之深染製程”, Euro Patents, submitted.
    55. J. T. Yeh, W. L. Zhou, H. H. Hsiung and Y. C. Shu, “可製成質輕且高抗張力戰術服之超高分子量聚乙烯與棉的包覆紗結構”, ROC Patent M331529 (2008).
    56. J. T. Yeh, W. L. Zhou, H. H. Hsiung and Y. C. Shu, “可製成質輕且高抗張力戰術服之超高分子量聚乙烯與棉的包覆紗結構”, PRC Patent ZL 2008 2 0110774. X (2008).
    57. J. T. Yeh, W. L. Zhou, H. H. Hsiung and Y. C. Shu, “可製成輕量化防熱手套之超高分子量聚乙烯與間位型芳香族聚醯胺的包覆紗結構體”, accepted ROC Patent 801A 9800255.281 (2009).
    58. J. T. Yeh, W. L. Zhou, H. H. Hsiung and Y. C. Shu, “可製成質輕且高抗張力戰術服之超高分子量聚乙烯與尼龍的包覆紗結構體”, accepted ROC Patent 801A 9800252.555 (2009).
    59. J. T. Yeh, W. L. Zhou, H. H. Hsiung and Y. C. Shu, “可製成質輕且高抗張力戰術背包之超高分子量聚乙烯與尼龍的包覆紗結構體”, accepted ROC Patent 801A 9800252.113 (2009).
    60. J. T. Yeh, C. K. Wang, A. Yeh, L. K. Huang, W. H. Wang, Y. C. Lai, K. H. Hsieh, C. Y. Huang and K, N, Chen, Polym. Inter., in press, (2012).
    61. J. T. Yeh, C. K. Wang, P. Hu, Y. C. Lai and F. C. Tsai, Polym. Int., in press (2012).
    62. K. Joseph, S. Thomas, C. Pavithran., Polymer, 37, 5139 (1996).
    63. D. Preechawong, M. Peesan, P. Supaphol, R. Rujiravanit, Carbohydr. Polym., 59, 329 (2005).
    64. L. Suryanegara, A. N. Nakagaito, H. Yano., Compos. Sci. Technol., 69, 1187 (2009).
    65. N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr. and R. A. J. Warren, Bioresour. Technol., 36, 21 (1991).
    66. A. Okiyama, M. Motoki and S. Yamanaka, Food Hydrocolloids, 6, 503(1993).
    67. J. G. Cristian, G. T. Fernando, M. G. Clara, P. T. Omar, C. F. Josep, M. P. Juan, Mat. Sci. Eng., 29, 1098 (2009).
    68. Y. Z. Wan, L. L. Hong, F. He, H. Liang, Y. Huang, X. L. Li, Compos. Sci. Technol., 69, 1212 (2009).
    69. I. M. G. Martins, S. P. Magina, L. Olivera, C. S. R. Freire, A. J. D. Silvestre, Neto, Gandini, Compos. Sci. Technol., 69, 2163 (2009).
    70. W. M. Perkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
    71. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
    72. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
    73. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
    74. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
    75. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
    76. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
    77. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
    78. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
    79. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
    80. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
    81. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
    82. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
    83. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
    84. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
    85. Ray H. Baughman, A. A. Zakhidov, Walt. A. de Heer, Sci., C, 297 (2002).
    86. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
    87. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
    88. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
    89. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert,W. J. Frederick Jr, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science, 311, 484(2006).
    90. N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresource Technology, 96, 673(2005).
    91. Y. Zhao, Y. Wang, J. Y. Zhu, A. Ragauskas, Y. Deng, Biotechnology and Bioengineering, 99, 1320(2008).
    92. A. T. W. M. Hendriks, G. Zeeman, Bioresource Technology, 100, 10(2009).
    93. N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresource Technology, 96, 673(2005).
    94. D. Pokhrel, T. Viraraghavan, Sci. Total. Environ., 333, 37 (2004).
    95. D.K. Gilding, Biocompat.Clin. Implant Mater., 2:209(1981)
    96. 张燕萍,变性淀粉制造与应用,北京化学业出版社(200l)。
    97. 陈涛,热塑性淀粉材料加工,结构和性能研究,四川大学(2006)。
    98. 王佩章,李田华,淀粉的热塑性研究,中国塑料,16,9 (2002)
    99. Griffin G J L.UK(1485833.1972.
    100. G. J. L. Griffin, J. Polym. Sci., 57, 28l (1977).
    101. G. J. L. Griffin, Pure. Appl. Chem., 52, 399 (1980).
    102. B. Wunderlich, Macromolecule Physics, Vol. 1, Academic Press, New York, 338 (1973).
    103. E. Smidt, P. Lechner, M. Schwanninger, G. Haberhauer, M. H. Gerzabek, Applied Spectroscopy, 56, 1170 (2002)
    104. C. Y. Liang, R. H. Marchessault, Polymer Science, 37, 385 (1959)
    105. T. A. Belousova, M. V. Shablygin, Y. Y. Belousova, L. K. Golova, S. P. Papkov, Polymer Science, 28, 1115 (1986).
    106. G. Qiuying, S. Xinyuan, L. Xinkun, Carbohydrate Polymers, 83, 1253 (2011).
    107. M. E. Embuscado, J. S. Marks and J. N. BeMiller, Food Hydrocolloids, 8, 407 (1994).
    108. J. D. Hoffman, R. L. Miller, Polymer, 38, 3151 (1997).
    109. J. D. Hoffman, J. J. Weeks, J. Res. Natl. Bur. Stand., 66, 13 (1962).
    110. T. Ohta, Polym. Eng. Sci. 23, 697 (1983).
    111. W. Hoogsteen, G. ten Brinke and A. J. Pennings, Colloid Polym. Sci. 266, 1003 (1988).

    無法下載圖示 全文公開日期 2018/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE