簡易檢索 / 詳目顯示

研究生: 邱瀅蓁
Ying-Chen Chiu
論文名稱: 河川疏濬工程風險辨識暨知識管理 系統設計與開發
Risk Identification of River Dredging Project for Knowledge Management System Design
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 李欣運
Hsin-Yun Lee
廖敏志
Min-Chih Liao
何嘉浚
Chia-Chun Ho
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 225
中文關鍵詞: 疏濬工程採售分離層級分析法風險辨識與控管風險回應知識管理系統開發
外文關鍵詞: Dredging Engeneering, Separate Digging and Selling, AHP, Risk Identification and Control, Risk Response, Knowledge Management, System Design
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣因受氣候及地質影響,河川有上游侵蝕旺盛、下游堆積快速的特性,為確保河川水流之順暢及排洪能力以保障人民之生命財產安全,疏濬工程是臺灣水利署最常採取的手法之一。然因疏濬工程之案件數量眾多、規模龐大且涉及眾多利害關係人,導致工程執行過程之不確定性提高,而水利署內亦缺乏相關之風險管理方法及因應對策。為提高疏濬工程承辦單位之風險管理能量,本研究走訪全國十處河川局,以專家訪談及計量方法,搜集統整疏濬工程相關知識經驗,並與水利署共同制定疏濬工程六大風險類別涵蓋30個風險因子,以風險分解結構(RBS)製作層級分析法問卷(AHP),仿效重要/表現程度分析法(IPA)所製成之風險影響程度/發生頻率問卷(RIFA),予具河川疏濬實務經驗之69位工程管理人員覆填。而後結合問卷及經驗訪談成果,進行關鍵風險因子辨識及綜合排序,提供日後工程人員進行風險處理之回應依據。此外,研究過程中亦察覺水利署內之工程管理經驗多以口頭傳承,未具有效且系統化之知識分享,因此於訪談間彙整各類疏濬工程風險事件及其消彌回應方式計170件,並以管理資訊系統建立疏濬工程風險知識庫,之中利用程式設計搜尋系統及使用者友善介面,盼能將工程經驗以累進式的系統化方式保存,供未來工程管理單位參酌。


    Owing to the influence of climate and geology, a river has the characteristics of strong upstream erosion and rapid downstream accumulation. Dredging is one of the methods most commonly adopted by the Taiwan Water Resources Agency to ensure the smooth flow of rivers and the ability to discharge water to protect the lives and property of people. However, the quantity of dredging projects is large, and involves a huge number of stakeholders, leading to high uncertainty in the implementation of the project. The Water Resources Agency also lacks relevant risk management methods and countermeasures. In order to enhance the risk management energy of dredging engineers, this study visits 10 River Management Office across the country, collects knowledge and experience in dredging engineering with expert meeting and science methods, and works with the Water Resources Agency to develop six major risk categories for dredging projects covering 30 risks. An Analytic Hierarchy Process Questionnaire (AHP) constructed using Risk Breakdown Structure (RBS), and a Risk Impact/Frequency Analysis Questionnaire (RIFA) constructed using the Important/Performance Analysis Method (IPA), are answered by 69 engineers with experience in river dredging. Finally, key risk factors are identified and ranked by combining the questionnaire and interview results, , providing engineers with risk management for the future. Additionally, research results indicate that the engineering management experience in the Water Resources Agency is mostly word of mouth, with no effective and systematic knowledge management method. Therefore, a “Dredging Engeneering Knowledge Base” is created in MySQL from 170 risk events and solutions for various dredging projects, and a GUI system is built in Python, to enable the Water Resources Agency to save the engineering experience systematically in a systematic manner for future reference.

    摘要 ABSTRACT 致謝 目錄 表目錄 圖目錄 第一章、緒論 1.1研究背景與動機 1.2研究目的及預期成果與貢獻 1.3研究流程與論文架構 第二章、文獻回顧 2.1臺灣河川概況及疏濬工程採售分離政策 2.2風險管理於公共工程運用之現況 2.3 以層級分析法(AHP)進行優先順序排列 2.4 重要/表現程度分析法(IPA)運用於風險管理之可行性評估 2.5 知識管理過去使用情況及其優劣 第三章、研究方法 3.1問卷調查法(QUESTIONNAIRE SURVEY) 3.2層級分析法(AHP)之基本假設與實施步驟 3.2.1層級分析法(AHP)基本假設與適用情境 3.2.2層級分析法(AHP)實施步驟與評估尺度 3.3重要-表現程度分析法(IPA)之實施步驟與適用情況 3.4知識庫建構方法與工具 3.4.1 MySQL關聯式資料庫之特性與優點 3.4.2 Python直譯式語言之特性與優點 第四章、現地訪談與風險分解結構(RBS)制定 4.1現地訪談結果與搜集資訊 4.2疏濬工程於生命週期中之風險影響因子辨識 4.3風險分解結構(RBS, RISK BREAKDOWN STRUCTURE) 第五章、問卷設計與分析 5.1問卷架構設計邏輯 5.2問卷分析與風險因子排序 5.2.1 問卷填答者背景資料 5.2.2 風險影響程度與發生頻率分析(RIFA) 5.2.2.1影響程度與發生頻率問卷填答結果 5.2.2.2 風險影響程度/發生頻率(RIFA)分佈圖 5.2.3 層級分析法(AHP)問卷填答結果與分析 5.2.3.1 分析流程與方法 5.2.3.2風險因子綜合排序結果(依疏濬量高低分組) 5.3 以RIFA結合AHP之綜合排序結果與建議 5.4 現地工程人員予排序結果之經驗回饋 第六章、疏濬工程風險知識庫設計與開發 6.1疏濬工程風險知識庫建構流程與方法 6.2知識庫與搜尋系統建構 6.2.1以MySQL建立知識庫 6.2.2以Python建立知識庫搜尋系統 6.3 知識庫於疏濬工程實務之情境應用 6.4 知識庫予現地工程人員試用回饋 第七章、結論與建議 7.1 研究結論 7.2 研究建議與未來方向 參考文獻 附錄一、河川局訪談會議記錄 附錄二、影響疏濬工程綜合效益之風險因子表 附錄三、層級分析法(AHP)暨風險影響程度-發生頻率(RIFA)問卷 附錄四、十處河川局及水利署層級分析法問卷分析結果 附錄五、疏濬工程風險知識庫 附錄六、疏濬工程風險知識庫程式編碼 附錄七、疏濬工程風險知識庫程式編碼建構教學

    [1] 葉振峰, 葉信富, 李振誥. 臺灣北部地區河川流量時空趨勢之研究. 臺灣鑛業. 2015;67:29-43.
    [2] 朱芳儀, 吳俊毅, 安軒霈, 林仕修, 陳樹群. 臺灣主要流域之河川型態及其野溪界點判定評估. 中華水土保持學報. 2018;49:178-86.
    [3] 蔡明璋, 方耀民, 許錫鑫, 張廣智, 劉昌文. 將數位化管理應用於河川土砂疏濬作業之效益分析. 營建管理季刊. 2014:20-34.
    [4] 吳俊毅, 蔡喬文, 陳樹群. 高屏溪流域崩塌地之地形特徵分析. 中華水土保持學報. 2016;47:156-64.
    [5] 陳樹群, 吳俊毅, 黃柏璁. 松鶴地區土石流災害之風險評估. 中華水土保持學報. 2007;38:287-98.
    [6] 陳樹群, 吳俊毅, 王文江, 謝政道, 周伯愷. 臺北水源特定區土砂保育健康診斷模式之建立. 中華水土保持學報. 2011;42:207-18.
    [7] 何幸娟, 林伯勳, 吳俊毅, 陳樹群, 簡以達, 蔡明發. 曾文及白河水庫集水區土砂環境檢查及評估體系. 中華水土保持學報. 2015;46:171-80.
    [8] 李長晏. 中臺灣跨域治理案例之探討 以大甲溪流域管理為例. 中國地方自治. 2007;60:16-34.
    [9] 鄭安, 徐輝明, 謝宏仁, 鍾瑞玲, 鄒思宇. 河川疏濬粒料販售價格之探討. 國立宜蘭大學工程學刊. 2008:105-16.
    [10] Miller R, Lessard D. Understanding and managing risks in large engineering projects. International Journal of Project Management. 2001;19:437-43.
    [11] Hallowell M, Esmaeili B, Chinowsky P. Safety risk interactions among highway construction work tasks. Construction Management and Economics. 2011;29:417-29.
    [12] El-Sayegh SM, Mansour MH. Risk Assessment and Allocation in Highway Construction Projects in the UAE. Journal of Management in Engineering. 2015;31:04015004.
    [13] Perera BAKS, Rameezdeen R, Chileshe N, Hosseini MR. Enhancing the effectiveness of risk management practices in Sri Lankan road construction projects: A Delphi approach. International Journal of Construction Management. 2014;14:1-14.
    [14] Yanagisawa K, Imamura F, Sakakiyama T, Annaka T, Takeda T, Shuto N. Tsunami Assessment for Risk Management at Nuclear Power Facilities in Japan. Pure and Applied Geophysics. 2007;164:565-76.
    [15] Seo JW, Choi HH. Risk-Based Safety Impact Assessment Methodology for Underground Construction Projects in Korea. Journal of Construction Engineering and Management. 2008;134:72-81.
    [16] Ghosh S, Jintanapakanont J. Identifying and assessing the critical risk factors in an underground rail project in Thailand: a factor analysis approach. International Journal of Project Management. 2004;22:633-43.
    [17] Hosny HE, Ibrahim AH, Fraig RF. Risk management framework for Continuous Flight Auger piles construction in Egypt. Alexandria Engineering Journal. 2018;57:2667-77.
    [18] Huang C-C, Chu P-Y, Chiang Y-H. A fuzzy AHP application in government-sponsored R&D project selection. Omega. 2008;36:1038-52.
    [19] Lee J, Lee H. Deriving Strategic Priority of Policies for Creative Tourism Industry in Korea using AHP. Procedia Computer Science. 2015;55:479-84.
    [20] Ghimire LP, Kim Y. An analysis on barriers to renewable energy development in the context of Nepal using AHP. Renewable Energy. 2018;129:446-56.
    [21] Anjasmoro B, Suharyanto, Sangkawati S. Priority Analysis of Small Dams Construction using Cluster Analysis, AHP and Weighted Average Method Case Study: Small Dams in Semarang District. Procedia Engineering. 2017;171:1514-25.
    [22] Unutmaz Durmuşoğlu ZD. Assessment of techno-entrepreneurship projects by using Analytical Hierarchy Process (AHP). Technology in Society. 2018;54:41-6.
    [23] Liberatore MJ. An extension of the analytic hierarchy process for industrial R&D project selection and resource allocation. IEEE Transactions on Engineering Management. 1987;EM-34:12-8.
    [24] Karasan A, Ilbahar E, Cebi S, Kahraman C. A new risk assessment approach: Safety and Critical Effect Analysis (SCEA) and its extension with Pythagorean fuzzy sets. Safety Science. 2018;108:173-87.
    [25] Duddu VR, Kukkapalli VM, Pulugurtha SS. Crash risk factors associated with injury severity of teen drivers. IATSS Research. 2019;43:37-43.
    [26] Khaloie H, Abdollahi A, Rashidinejad M, Siano P. Risk-based probabilistic-possibilistic self-scheduling considering high-impact low-probability events uncertainty. International Journal of Electrical Power & Energy Systems. 2019;110:598-612.
    [27] Karthiyayini N, Rajendran C, Kumaravel M. Importance-performance analysis (IPA) for testing – and calibration – laboratories in India. Benchmarking: An International Journal. 2018;25:1232-44.
    [28] Rodriguez-Valencia A, Rosas-Satizabal D, Paris D. Importance-Performance Analysis in Public Transportation: Methodological Revision for Practical Implementation. Transportation Research Record. 2019;2673:710-23.
    [29] Palmer A, O’Neill MA. Importance‐performance analysis: a useful tool for directing continuous quality improvement in higher education. Quality Assurance in Education. 2004;12:39-52.
    [30] To WM, Lai LSL, To WM. Importance‐performance analysis for public management decision making: An empirical study of China's Macao special administrative region. Management Decision. 2010;48:277-95.
    [31] Dolinsky AL. Considering the Competition in Strategy Development: An Extension of Importance--Performance Analysis. Journal of Health Care Marketing. 1991;11:31-6.
    [32] Medina-Muñoz DR, Medina-Muñoz RD. The Attractiveness of Wellness Destinations: An Importance–Performance–Satisfaction Approach. International Journal of Tourism Research. 2014;16:521-33.
    [33] Han SH, Kim DY, Kim H, Jang W-S. A web-based integrated system for international project risk management. Automation in Construction. 2008;17:342-56.
    [34] Tserng HP, Yin SYL, Dzeng RJ, Wou B, Tsai MD, Chen WY. A study of ontology-based risk management framework of construction projects through project life cycle. Automation in Construction. 2009;18:994-1008.
    [35] Ding LY, Zhong BT, Wu S, Luo HB. Construction risk knowledge management in BIM using ontology and semantic web technology. Safety Science. 2016;87:202-13.
    [36] Serpella AF, Ferrada X, Howard R, Rubio L. Risk Management in Construction Projects: A Knowledge-based Approach. Procedia - Social and Behavioral Sciences. 2014;119:653-62.
    [37] Liebowitz J. Key ingredients to the success of an organization's knowledge management strategy. Knowledge and Process Management. 1999;6:37-40.
    [38] Mockler RJ, Dologite DG. Developing knowledge-based systems for strategic corporate planning. Long Range Planning. 1988;21:97-102.
    [39] Saaty TL, Rokou E. How to prioritize inventions. World Patent Information. 2017;48:78-95.
    [40] Saaty TL. Rank from comparisons and from ratings in the analytic hierarchy/network processes. European Journal of Operational Research. 2006;168:557-70.
    [41] Saaty TL. Highlights and critical points in the theory and application of the Analytic Hierarchy Process. European Journal of Operational Research. 1994;74:426-47.
    [42] Saaty TL, Kearns KP. CHAPTER 3 - The Analytic Hierarchy Process. In: Saaty TL, Kearns KP, editors. Analytical Planning: Pergamon; 1985. p. 19-62.
    [43] Saaty TL. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology. 1977;15:234-81.
    [44] Saaty TL. How to make a decision: The analytic hierarchy process. European Journal of Operational Research. 1990;48:9-26.
    [45] Martilla JA, James JC. Importance-performance analysis. Journal of marketing. 1977;41:77-9.
    [46] MySQL A. MySQL. 2001.
    [47] Widenius M, Axmark D, Arno K. MySQL reference manual: documentation from the source: " O'Reilly Media, Inc."; 2002.
    [48] Yarger RJ, Reese G, King T. MySQL and mSQL: O'Reilly \& Associates, Inc.; 1999.
    [49] Lukaszewski A, Reynolds A. MySQL for Python: Packt Publishing Ltd; 2010.
    [50] DuBois P, Foreword By-Widenius M. MySQL: New riders publishing; 1999.
    [51] Rossum G. Python reference manual. CWI (Centre for Mathematics and Computer Science); 1995.
    [52] Bell C, Kindahl M, Thalmann L. MySQL high availability: tools for building robust data centers: " O'Reilly Media, Inc."; 2010.
    [53] Saaty TL. Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research. 2003;145:85-91.
    [54] Saaty TL. Applications of analytical hierarchies. Mathematics and Computers in Simulation. 1979;21:1-20.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE