簡易檢索 / 詳目顯示

研究生: 陳聖諺
Sheng-Yen Chen
論文名稱: 以聚合物與其金屬氧化物複合物修飾可拋棄式電極感測重金屬及亞甲基藍
Detection of heavy metal and methylene blue using polymers and its metal oxide composites decorated disposable electrode
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 胡啟章
Chi-Chang Hu
黃昆平
Kun-Ping Huang
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 135
中文關鍵詞: 氧化鋁聚苯胺3-氨基丙基三乙養基矽重金屬B型肝炎亞甲基藍
外文關鍵詞: Aluminum oxide, Polyaniline, (3-Aminopropyl)triethoxysilane, Heavy metal, Hepatitis B virus, Methylene blue
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要由兩部分組成,第一部分論文之研究目標為製備一次性重金屬感測器,所採取的方式為利用靜電紡絲製備氧化鋁奈米纖維,並利用氧化鋁-聚苯胺複合材料修飾於可拋棄式的工作電極表面,以提升電極對重金屬感測之靈敏度,之後將修飾後的電極應用於感測鋅離子與銅離子。
為了增加電極對感測重金屬的靈敏度,本研究以化學合成方式製備具有導電性之聚苯胺高分子,並與電紡所製備的氧化鋁奈米纖維,以不同的體積比例均勻混合,接著利用減弱全反射-傅立葉轉換紅外線光譜儀 (ATR-FTIR)、X光繞射儀 (XRD)、場發射掃描式電子顯微鏡 (FE-SEM)等儀器,分析複合材料之化學組成、結晶型態以表面型態。本研究製備氧化鋁-聚苯胺複合材料,並修飾於可拋棄式碳電極 (screen printed electrode, SPE)工作表面,利用方波陽極溶出伏安法 (square wave anodic stripping voltammetry, SWASV)分別感測鋅離子與銅離子。結果顯示,所製備的電極感測鋅離子濃度時,感測靈敏度為1.45 uA ppb-1 cm-2 (線性範圍為80-200 ppb),偵測極限為24.33 ppb。另外,同樣以方波陽極溶出伏安法感測銅離子,感測靈敏度為1.50 uA ppb-1 cm-2 (線性範圍為20-200 ppb),偵測極限為7.70 ppb。接著,本研究同樣以氧化鋁-聚苯胺複合材料,修飾於可拋棄式金電極(gold electrode, AuE)工作表面,並同樣以方波陽極溶出伏安法感測銅離子,結果顯示感測靈敏度為6.54 uA ppb-1 cm-2 (線性範圍為20-200 ppb),偵測極限為2.14 ppb。
本論文的第二部分,製備一次性DNA感測器,為提升DNA的固定效果,嘗試修飾三種不同含有胺官能基之材料:聚苯胺、聚乙烯亞胺、以及3-氨基丙基三乙氧基矽烷於電極工作表面,再以滴附法將probe DNA滴於電極上,接著同樣以滴附法將target DNA滴於電極工作表面,最後感測固定濃度之亞甲基藍,觀察在不同濃度之目標DNA下電流響應之差異,計算所製備電極對DNA之感測靈敏度以及其偵測極限。
本研究將probe DNA修飾於三種不同含有胺官能基改質的網印碳電極:PANI3/SPE、PEI3/SPE、APTES/SPE,以方波陽極溶出伏安法,感測固定濃度之亞甲基藍溶液。實驗結果發現在PEI3/SPE組別中,電極對target DNA感測靈敏度為0.65 uA uM-1 cm-2 (線性範圍為10-50 uM),偵測極限為74.0 uM。然而在APTES/SPE組別中,電極對target DNA感測靈敏度為4.37 uA uM-1 cm-2 (線性範圍為1-10 uM),高濃度時感測靈敏度為0.87 uA uM-1 cm-2 (線性範圍為10-50 uM),偵測極限為4.83 uM。


In this study, two different electrochemical sensors were developed, aiming to be applied for onsite detection for metal ions and methylene blue, respectively. At the first part, the electrochemical sensors based on the anodic stripping voltammetry were developed for the detection of heavy metals, including zinc and copper ions. The aim of the second part of this study is to develop electrochemical sensors for DNA detection.
For first part of the thesis, two electrodes were applied for evaluating the sensitivity toward zinc and copper ions: (I) screen printed electrode (SPE), and (II) gold electrode (AuE). In order to enhance the sensitivity and the limit of detection (LOD), the electrode was modified with electrospun a-Al2O3 fibers mixed with polyaniline (PANI) (a-Al2O3-PANI). The functionalities, crystallinity, morphology of a-Al2O3 were characterized by ATR-FTIR, XRD, and FE-SEM, respectively. To detect zinc and copper ions by square wave anodic stripping voltammetry (SWASV). The a-Al2O3-PANI/SPE revealed a good sensitivity of 1.45 uA ppb-1 cm-2 toward zinc ions with the linear range of from 80 to 200 ppb, and the limit of detection of 24.33 ppb. On the other hand, the a-Al2O3-PANI/SPE and a-Al2O3-PANI/AuE revealed good sensitivity of 1.50 and 6.54 uA ppb-1 cm-2 toward Cu2+ ions, respectively. The linear range for the detection of Cu2+ was from 20-200 ppb on both electrodes, and the limit of detection was 7.70 and 2.14 ppb, respectively.
For the second part of the thesis, the surface of SPE was modified to prepare DNA sensor. In order to enhance the affinity between DNA and SPE, the electrode was modified with three different amine functionalities containing compounds: PANI, PEI, and APTES. The sensitivity and LOD (limit of detection) of the prepared sensors was determined toward methylene blue (MB). For the SPE decorated with PEI3(PEI3/SPE), the sensitivity for the detection of MB was 0.65 uA uM-1 cm-2,with the linear range from 10 to 50 uM, and the LOD of 74.0 uM. For the APTES/SPE, the sensitivity toward MB detection was 4.37 uA uM-1 cm-2 at lower concentration range from 1 to 10 uM. On the other hand, the sensitivity was 0.87 uA uM-1 cm-2 at higher concentration, from 10 to 50 uM, with the LOD of 4.83 uM.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 前言與研究動機-重金屬感測器 1 1-2 前言與研究動機-DNA感測器 2 第二章 文獻回顧 3 2-1 製備重金屬感測器 3 2-1-1 感測重金屬的必要性 3 2-1-2 感測重金屬相關文獻 4 2-1-3 電化學法感測重金屬 6 2-1-4 聚苯胺應用於重金屬感測 10 2-1-5 氧化鋁應用於重金屬吸附 13 2-2製備DNA生物感測器 14 2-2-1 生物感測器 (Biosensor) 14 2-2-2 去氧核醣核酸 (Deoxyribonucleic acid, DNA) 15 2-2-3 常見DNA感測方法 16 2-2-4 修飾層對DNA感測之比較 22 第三章 實驗方法 26 3-1實驗藥品與溶液配製 27 3-1-1 實驗藥品 27 3-1-2溶液配製 28 3-2 實驗設備 29 3-3 實驗方法 30 3-3-1 製備氧化鋁奈米纖維 30 3-3-2 製備聚苯胺 (polyaniline, PANI) 30 3-3-3 氧化鋁奈米纖維-聚苯胺混合溶液 (α-Al2O3/PANI solution) 31 3-3-4 製備重金屬感測系統 31 3-4 分析儀器與分析方法 34 3-4-1 靜電紡絲系統 (Electro-spinning system) 34 3-4-2 場發射電子顯微鏡 (FE-SEM) 34 3-4-3 減弱全反射-傅立葉轉換紅外線光譜儀 (ATR-FTIR) 35 3-4-4 X光繞射分析 (X-ray diffraction, XRD) 35 3-5 電化學分析原理 36 3-5-1 電化學裝置 36 3-5-2 循環伏安法 (Cyclic Voltammetry) 38 3-5-3 溶出伏安法 (Stripping Voltammetry) 39 3-5-4 方波溶出伏安法 (Square Wave Stripping Voltammetry) 39 3-5-5 陽極溶出伏安法 (Anodic Stripping Voltammetry, ASV) 40 第四章 可拋棄式電極應用於感測重金屬結果與討論 41 4-1 製備α型態氧化鋁-聚苯胺複合材料 42 4-1-1 製備氧化鋁奈米纖維 42 4-1-2 氧化鋁奈米纖維結晶型態 43 4-1-3 α-Al2O3-PANI複合材料表面型態 44 4-1-4 α-Al2O3-PANI複合材料化學組成分析 45 4-1-5 α-Al2O3-PANI複合材料之電化學特性 47 4-2 陽極溶出伏安法感測金屬離子 51 4-2-1 α-Al2O3-PANI複合材料修飾層比例對SPE感測鋅離子的影響 52 4-2-2 α-Al2O3-PANI複合材料修飾體積對SPE感測鋅離子的影響 53 4-2-3 以最適化條件感測鋅與銅離子 54 4-3 α-Al2O3-PANI複合材料對金電極感測銅離子的影響 61 4-4 本研究與其他文獻感測重金屬鋅與銅之比較 65 第五章 可拋棄式電極修飾應用於B型肝炎DNA感測 67 5-1 α-Al2O3-PANI對於DNA感測之影響 68 5-1-1 以α-Al2O3-PANI作為修飾層對探針DNA固定之影響 68 5-1-2 目標DNA固定於probe DNA/α-Al2O3-PANI修飾層 70 5-1-3 DNA溶液滴附時間對電流響應的影響 72 5-1-4 DNA固定於α-Al2O3-PANI/SPE之化學組成分析 73 5-2. DNA固定於聚苯胺 (PANI)修飾層 75 5-2-1 PANI修飾層對DNA固定之影響 75 5-2-2 滴附時間對DNA附著於PANI/SPE表面之影響 77 5-2-3 紫外光照射距離以及照射時間對DNA貼附於PANI/SPE之影響 79 5-2-4 PANI修飾層暴露於紫外光照射對DNA貼附的影響 81 5-2-5 以最適化條件固定目標 DNA於probe DNA/PANI3/SPE電極 83 5-2-6 PANI3修飾層應用於感測亞甲基藍(methylene blue, MB) 84 5-2-7 以最適化條件修飾目標 DNA於電極表面並應用於MB感測 88 5-3. DNA固定於聚乙烯亞胺(PEI)修飾層 90 5-4. DNA固定於3-氨基丙基三乙氧基矽烷 (APTES)修飾層 92 第六章 結論與未來展望 97 6-1 結論:重金屬感測器 97 6-2 未來展望:重金屬感測器 98 6-3 結論:DNA感測器 99 6-4 未來展望:DNA感測器 101 第七章 Reference 102 附錄一 (Q&A) 109 附錄二 Reference 118

1. Chasapis, C.T., A.C. Loutsidou, C.A. Spiliopoulou, and M.E. Stefanidou, Zinc and human health: an update. Archives of Toxicology, 2012. 86(4). 521-534.
2. Uriu-Adams, J.Y. and C.L. Keen, Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 2005. 26(4). 268-298.
3. Shen, L., Z. Chen, Y. Li, S. He, S. Xie, X. Xu, Z. Liang, X. Meng, Q. Li, and Z. Zhu, Electrochemical DNAzyme sensor for lead based on amplification of DNA− Au Bio-Bar codes. Analytical Chemistry, 2008. 80(16). 6323-6328.
4. Goyer, R.A., Metal Toxicology: Approaches and Methods. 2016: Elsevier.
5. 行政院環境保護署, 放流水標準. 2017.
6. Singh, R., N. Gautam, A. Mishra, and R. Gupta, Heavy metals and living systems: an overview. Indian Journal of Pharmacology, 2011. 43(3). 246.
7. Wen, X., Q. Yang, Z. Yan, and Q. Deng, Determination of cadmium and copper in water and food samples by dispersive liquid–liquid microextraction combined with UV–vis spectrophotometry. Microchemical Journal, 2011. 97(2). 249-254.
8. Ghaedi, M., A. Shokrollahi, F. Ahmadi, H. Rajabi, and M. Soylak, Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. Journal of Hazardous Materials, 2008. 150(3). 533-540.
9. Kojuncu, Ý., J.M. Bundalevska, Ü. Ay, K. Čundeva, T. Stafilov, and G. Akçin, Atomic absorption spectrometry determination of Cd, Cu, Fe, Ni, Pb, Zn, and Tl traces in seawater following flotation separation. Separation Science and Technology, 2004. 39(11). 2751-2765.
10. Carr, R., C. Zhang, N. Moles, and M. Harder, Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environmental Geochemistry and Health, 2008. 30(1). 45-52.
11. Alvarez, A., J. Alvarez, and R. Alvarez, Heavy metal analysis of rainwaters by nuclear related techniques: Application of APDC precipitation and energy dispersive X-ray fluorescence. Journal of Radioanalytical and Nuclear Chemistry, 2000. 245(3). 485-489.
12. Shefsky, S. Comparing Field Portable X-Ray Fluorescence (XRF) to laboratory analysis of heavy metals in soil. in International Symposium of Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, NV, 29–31 January. 1997.

13. Sacristán, D., R.A.V. Rossel, and L. Recatalá, Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence spectrometry. Geoderma, 2016. 265. 6-11.
14. Long, Z., J. Xin, and X. Hou, Determination of arsenic and mercury in Chinese medicinal herbs by atomic fluorescence spectrometry with closed‐vessel microwave digestion. Spectroscopy letters, 2004. 37(3). 263-274.
15. Winefordner, J.D. and R.C. Elser, Atomic fluorescence spectrometry. Analytical Chemistry, 1971. 43(4). 24A-42a.
16. Nuttall, K.L., W.H. Gordon, and K.O. Ash, Inductively coupled plasma mass spectrometry for trace element analysis in the clinical laboratory. Annals of Clinical & Laboratory Science, 1995. 25(3). 264-271.
17. Lubert, K.H. and K. Kalcher, History of electroanalytical methods. Electroanalysis, 2010. 22(17‐18). 1937-1946.
18. Pujol, L., D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, and P. Gros, Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution. Frontiers in chemistry, 2014. 2. 19.
19. Verma, N. and M. Singh, Biosensors for heavy metals. Biometals, 2005. 18(2). 121-129.
20. Liu, J. and Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society, 2003. 125(22). 6642-6643.
21. Bontidean, I., C. Berggren, G. Johansson, E. Csöregi, B. Mattiasson, J.R. Lloyd, K.J. Jakeman, and N.L. Brown, Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Analytical Chemistry, 1998. 70(19). 4162-4169.
22. Malitesta, C. and M. Guascito, Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosensors and Bioelectronics, 2005. 20(8). 1643-1647.
23. Ellis, W.D., Anodic stripping voltammetry. J. Chem. Educ, 1973. 50(3). A131.
24. Arrigan, D.W., Electrochemical strategies in detection science. 2015: Royal Society of Chemistry.
25. Cheek, G.T. and R. Nelson, Applications of chemically modified electrodes to analysis of metal ions. Analytical Letters, 1978. 11(5). 393-402.
26. Boeva, Z.A. and V. Sergeyev, Polyaniline: Synthesis, properties, and application. Polymer Science Series C, 2014. 56(1). 144-153.

27. Ruecha, N., N. Rodthongkum, D.M. Cate, J. Volckens, O. Chailapakul, and C.S. Henry, Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn (II), Cd (II), and Pb (II). Analytica Chimica Acta, 2015. 874. 40-48.
28. Ding, B., Y. Si, X. Wang, J. Yu, L. Feng, and G. Sun, Label-free ultrasensitive colorimetric detection of copper (II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips. Journal of Materials Chemistry, 2011. 21(35). 13345-13353.
29. Gangwar, J., B.K. Gupta, S.K. Tripathi, and A.K. Srivastava, Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale, 2015. 7(32). 13313-13344.
30. Mahmoud, M.E., M.M. Osman, O.F. Hafez, and E. Elmelegy, Removal and preconcentration of lead (II), copper (II), chromium (III) and iron (III) from wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol. Journal of Hazardous Materials, 2010. 173(1). 349-357.
31. Ghindilis, A.L., P. Atanasov, M. Wilkins, and E. Wilkins, Immunosensors: electrochemical sensing and other engineering approaches. Biosensors and Bioelectronics, 1998. 13(1). 113-131.
32. Bhalla, N., P. Jolly, N. Formisano, and P. Estrela, Introduction to biosensors. Essays in biochemistry, 2016. 60(1). 1-8.
33. Clark, L.C. and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 1962. 102(1). 29-45.
34. Kirsch, J., C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews, 2013. 42(22). 8733-8768.
35. Palchetti, I. and M. Mascini, Biosensor technology: a brief history, in Sensors and Microsystems. 2010, Springer. p. 15-23.
36. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, The Structure and Function of DNA. 2002.
37. Guo, X., Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics, 2012. 5(7). 483-501.
38. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9). 871-874.
39. Gaastra, W., Enzyme-linked immunosorbant assay (ELISA). Proteins, 1984. 349-355.

40. Karch, H., P.I. Tarr, and M. Bielaszewska, Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology, 2005. 295(6). 405-418.
41. Park, S., H. Kim, S.-H. Paek, J.W. Hong, and Y.-K. Kim, Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157: H7. Ultramicroscopy, 2008. 108(10). 1348-1351.
42. Shen, Z., N. Hou, M. Jin, Z. Qiu, J. Wang, B. Zhang, X. Wang, J. Wang, D. Zhou, and J. Li, A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathogens, 2014. 6(1). 14.
43. Kerman, K., M. Kobayashi, and E. Tamiya, Recent trends in electrochemical DNA biosensor technology. Measurement Science and Technology, 2003. 15(2). R1.
44. Zhu, N., A. Zhang, Q. Wang, P. He, and Y. Fang, Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Analytica Chimica Acta, 2004. 510(2). 163-168.
45. Shakoori, Z., S. Salimian, S. Kharrazi, M. Adabi, and R. Saber, Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Analytical and Bioanalytical Chemistry, 2015. 407(2). 455-461.
46. Ghanbari, K., S. Bathaie, and M. Mousavi, Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors and Bioelectronics, 2008. 23(12). 1825-1831.
47. Sengupta, P.P., J.N. Gloria, D.N. Amato, D.V. Amato, D.L. Patton, B. Murali, and A.S. Flynt, Utilizing Intrinsic Properties of Polyaniline to Detect Nucleic Acid Hybridization through UV-Enhanced Electrostatic Interaction. Biomacromolecules, 2015. 16(10). 3217-3225.
48. Doody, A.M., J.N. Korley, K.P. Dang, P.N. Zawaneh, and D. Putnam, Characterizing the structure/function parameter space of hydrocarbon-conjugated branched polyethylenimine for DNA delivery in vitro. Journal of Controlled Release, 2006. 116(2). 227-237.
49. Liu, X., X. Qu, H. Fan, S. Ai, and R. Han, Electrochemical detection of DNA hybridization using a water-soluble branched polyethyleneimine–cobalt (III)–phenanthroline indicator and PNA probe on Au electrodes. Electrochimica Acta, 2010. 55(22). 6491-6495.
50. Howarter, J.A. and J.P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 2006. 22(26). 11142-11147.

51. Liu, P., Y. Zhu, J. Ma, S. Yang, J. Gong, and J. Xu, Preparation of continuous porous alumina nanofibers with hollow structure by single capillary electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 436. 489-494.
52. Abdolahi, A., E. Hamzah, Z. Ibrahim, and S. Hashim, Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials, 2012. 5(8). 1487-1494.
53. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 2004. 16(14). 1151-1170.
54. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司.
55. Barón-Jaimez, J., M. Joya, and J. Barba-Ortega. Anodic stripping voltammetry–ASV for determination of heavy metals. in Journal of Physics: Conference Series. 2013. IOP Publishing.
56. Robles, I., L.A. Godínez, J. Manríquez, F. Rodríguez, A. Rodríguez, and E. Bustos, Electrochemical Detection of Mercury Removal from Polluted Bentonite and Quartz using Different Removing Agents. 2014.
57. Sharma, A.K., G. Chaudhary, I. Kaushal, U. Bhardwaj, and A. Mishra, Studies on Nanocomposites of Polyaniline Using Different Substrates. American Journal of Polymer Science, 2015. 5(1A). 1-6.
58. Hatamzadeh, M., A. Mahyar, and M. Jaymand, Chemical modification of polyaniline by N-grafting of polystyrenic chains synthesized via nitroxide-mediated polymerization. Journal of the Brazilian Chemical Society, 2012. 23(6). 1008-1017.
59. Boumaza, A., A. Djelloul, and F. Guerrab, Specific signatures of α-alumina powders prepared by calcination of boehmite or gibbsite. Powder Technology, 2010. 201(2). 177-180.
60. Bard, A. and L. Faulkner, Electrochem. Methods. Fundam. Appl.. Wiley, New York, 2001.
61. Hunsom, M., K. Pruksathorn, S. Damronglerd, H. Vergnes, and P. Duverneuil, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 2005. 39(4). 610-616.
62. Rahmani, A., H.Z. Mousavi, and M. Fazli, Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 2010. 253(1). 94-100.
63. Guo, X., Y. Yun, V.N. Shanov, H.B. Halsall, and W.R. Heineman, Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode. Electroanalysis, 2011. 23(5). 1252-1259.

64. De La Gala Morales, M., M. Marín, L. Calvo Blázquez, and E.P. Gil, Performance of a bismuth bulk rotating disk electrode for heavy metal analysis: determination of lead in environmental samples. Electroanalysis, 2012. 24(5). 1170-1177.
65. Injang, U., P. Noyrod, W. Siangproh, W. Dungchai, S. Motomizu, and O. Chailapakul, Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica Chimica Acta, 2010. 668(1). 54-60.
66. Aragay, G. and A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012. 84. 49-61.
67. Morton, J., N. Havens, A. Mugweru, and A.K. Wanekaya, Detection of Trace Heavy Metal Ions Using Carbon Nanotube‐Modified Electrodes. Electroanalysis, 2009. 21(14). 1597-1603.
68. Zhuo, L., Y. Huang, M.S. Cheng, H.K. Lee, and C.-S. Toh, Nanoarray membrane sensor based on a multilayer design for sensing of water pollutants. Analytical Chemistry, 2010. 82(11). 4329-4332.
69. Fu, X.-C., J. Wu, J. Li, C.-G. Xie, Y.-S. Liu, Y. Zhong, and J.-H. Liu, Electrochemical determination of trace copper (II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters. Sensors and Actuators B: Chemical, 2013. 182. 382-389.
70. Lin, H., M. Li, and D. Mihailovič, Simultaneous determination of copper, lead, and cadmium ions at a Mo6S9-xIx nanowires modified glassy carbon electrode using differential pulse anodic stripping voltammetry. Electrochimica Acta, 2015. 154. 184-189.
71. Johnson, I.M., H. Prakash, J. Prathiba, R. Raghunathan, and R. Malathi, Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA. PloS one, 2012. 7(12). e50019.
72. Abedi, M., S. Bathaie, and M. Mousavi, Interaction between DNA and some salicylic acid derivatives and characterization of their DNA targets. Electroanalysis, 2013. 25(11). 2547-2556.
73. Yang, J., X. Wang, and H. Shi, An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors and Actuators B: Chemical, 2012. 162(1). 178-183.
74. Karran, P. and R. Brem, Protein oxidation, UVA and human DNA repair. DNA Repair, 2016. 44. 178-185.

75. Enescu, M., B. Levy, and V. Gheorghe, Molecular Dynamics Simulation of Methylene Blue− Guanine Complex in Water: The Role of Solvent in Stacking. The Journal of Physical Chemistry B, 2000. 104(5). 1073-1077.
76. Akinc, A., M. Thomas, A.M. Klibanov, and R. Langer, Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine, 2005. 7(5). 657-663.
77. Zhao, Q.-Q., J.-L. Chen, T.-F. Lv, C.-X. He, G.-P. Tang, W.-Q. Liang, Y. Tabata, and J.-Q. Gao, N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biological and Pharmaceutical Bulletin, 2009. 32(4). 706-710.
78. Huguenin, F., M. Ferreira, V. Zucolotto, F.C. Nart, R.M. Torresi, and O.N. Oliveira, Molecular-level manipulation of V2O5/polyaniline layer-by-layer films to control electrochromogenic and electrochemical properties. Chemistry of Materials, 2004. 16(11). 2293-2299.
79. Song, E. and J.-W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials, 2013. 3(3). 498-523.

無法下載圖示 全文公開日期 2022/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE