簡易檢索 / 詳目顯示

研究生: 羅俊詠
CHUN-YUNG LO
論文名稱: 含HT690填充型箱型柱在軸壓力下之柱板局部挫屈與混凝土圍束
Local buckling and concrete confinement of concrete-filled box coulmns with HT690 steel under axial Compression
指導教授: 陳正誠
Cheng-Cheng Chen
口試委員: 陳建中
Chien-Chung Chen
邱建國
Chien-Kuo Chiu
鍾興陽
Hsin Yau Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 191
中文關鍵詞: HT690填充混凝土箱型柱局部挫屈混凝土圍束
外文關鍵詞: HT690, concrete-filled box column, local buckling, concrete confinement.
相關次數: 點閱:194下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用商業軟體ABAQUS執行有限元素法分析含HT690填充型混凝土箱型柱的軸向行為,並以實驗數據驗證分析模型之準確性,進而探討高性能鋼材(HT690)之局部挫屈發展情形及不同斷面形狀如方形及矩形混凝土圍束效應發展過程與機制。
研究結果顯示:(1)填充型箱型柱在發展出最大強度後,強度快速下降,此現象為內部混凝土碎裂後強度急遽下降導致,肢材寬厚比越大的試體,下降的幅度將越大。(2)當內部混凝土碎裂後,水平拱效應開始顯著,當柱板局部挫屈後,提供混凝土額外圍束作用,即垂直拱效應顯著,而當水平拱效應與垂直拱效應一起作用時,圍束作用顯著並使混凝土強度增加與回升,肢材寬厚比越大的試體,因局部挫屈變早而提早發展垂直拱效應(3)斷面長寬比越大的箱型柱,在拱效應的作用越不明顯,內部混凝土圍束行為越差,估計在弱軸承受彎矩時期撓曲延展性會更加顯著。


The main purposes of this research are to investigate the local buckling of CFBC with high Performance Steel (HT690) and the concrete confinement development process and mechanism of concrete-filled box columns with various cross-section aspect ratio. The axial behavior of the CFBC was simulated by using a commercial finite element program ABAQUS. The feasibility of the finite element models was verified by comparing the finite element analysis results to the experimental results. Based on FEM simulation results, the following conclusions can be drawn:
(1) The strength of CFBC specimens decrease rapidly after the first peak strength is reached. This phenomenon is mainly due to the strength drop of concrete when concrete crushed. The higher the b/t ratio of the column plate was, the faster the strength degradation resulted.
(2) Concrete confinement provided by horizontal arch action starts to become noticeable after concrete crushing. Vertical arch action, which provides additional concrete confinement, is developed after column wall buckling. Horizontal arch action combined with vertical arch action provides significant confinement to the concrete, and as a result, concrete started to gain its strength. A larger column plate b/t ratio resulted in an earlier development of vertical arch action.
(3) The larger the cross-section aspect ratio was, the less effective the horizontal and vertical arch actions were. It is predicted that this factor will reduce the flexural ductility of CFBC, especially when the column is subjected to weak axis moment.

論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表索引 VI 圖索引 VII 第一章 緒論 1 1.1 研究背景及目的 1 1.2 研究方法與內容 4 第二章 文獻回顧 5 2.1 填充型箱型柱文獻 5 2.2 混凝土損傷塑性模型(Concrete Damaged Plasticity Model) 9 2.2.1 力學行為 9 2.2.2 降伏準則 11 2.2.3 塑性流準則 12 第三章 CFBC軸向有限元素分析 13 3.1 試驗資料 13 3.2 有限元素分析模型建立流程 13 3.3 AO系列模型之挫屈模態分析 16 3.4 AI系列模型之軸向分析 16 3.5 AA、AB系列模型之軸向分析 18 3.6 方形箱型柱內填充混凝土之圍束機制 23 3.7 長寬比對矩形填充型箱型柱的影響 25 第四章 結論與建議 30 4.1 結論 30 4.2 建議 32 參考文獻 32

[1] 王錫欽,「TCMP鋼材生產製品與品質特性」,技術與訓練19卷3期pl-10,1994。
[2] 黃少暉,「超高強度鋼材填充型箱型柱之軸向行為」,碩士論文,國立台灣科技大學,2013。
[3] Ge HB, Usami T. Strength analysis of concrete-filled thin-walled steel box columns. J Constr Steel Res 1994;30:259–81.
[4] B. Uy, “Strength of short concrete filled high strength steel box columns,” Journal of Constructional Steel Research, vol. 57, pp. 113-134, 2001.
[5] American Institute of Steel Construction (AISC), “Seismic Provisions for Structural Steel Buildings,” ANSI/AISC 341-10, AISC Inc., Chicago (IL), March 9, 2010.
[6] B. Uy, “Local and post-local buckling of concrete filled steel welded box column,”Journal of Constructional Steel Research, vol. 47, pp. 47-72, 1998.
[7] N. E. Shanmugam, B. Lakshmi, and B. Uy, “An analytical model for thin-walled steel box columns with concrete in-fill,” Engineering Structures, vol. 24, pp. 825-838,2002.
[8] B. Uy, “Strength of short concrete filled steel box columns incorporating local buckling,” Journal of Structural Engineering, vol. 126, pp. 341-352, 2000.
[9] British Standards Institution, “Eurocode 4: Design of composite steel and concrete structures,” 2004.
[10] K. Sakino, H. Nakahara, S. Morino, and I. Nishiyama, “Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns,” Journal of Structural Engineering, vol.130, pp. 180-188, 2004.
[11] D. Liu, W.-M. Gho, and J. Yuan, “Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns," Journal of Constructional Steel Research, vol. 59, pp. 1499-1515, 2003.
[12] D. Liu, “Tests on high-strength rectangular concrete-filled steel hollow section stub columns,” Journal of Constructional Steel Research, vol. 61, pp. 902-911,2005.
[13] D. Liu and W.-M. Gho, “Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns,” Thin-Walled Structures, vol. 43, pp. 1131-1142, 2005.
[14] L. Guo, S. Zhang, W.-J. Kim, and G. Ranzi, “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, vol. 45, pp. 961-973,2007.
[15] 柯人文,「填充混凝土箱型鋼柱之短柱軸向行為」,博士論文,國立台灣科技大學營建工程系,2012。
[16] ABAQUS. User’s manual-version 6.13. Hibbitt: Karlsson & Sorensen, Inc., 2002
[17] J. LUBLINER, J. OLIVER. Et al, “A Plastic-Damage Model for Concrete, ” International Journal of Solids and Structures, vol. 25, No 3, pp. 299-326, 1989
[18] Lee, J. and Fenves, G. (1998). ”Plastic-Damage Model for Cyclic Loading of Concrete Structures.” J. Eng. Mech., 124(8), 892–900.
[19] C.C. Chen, J.W. Ko, G.L. Huang, Y.M. Chang, “Local Buckling and Concrete Confinement of Concrete-Filled Box Columns under Axial Load,” Journal of Constructional Steel Research, Accepted 7 June 2012.
[20] 郭慶隆,「高性能鋼與低降伏強度鋼在耐震設計之應用」,博士論文,國立台灣科系大學營建工程系,2003。
[21] Hu HT, Huang CS, Wu MH, Wu YM. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J Struct Eng ASCE 2003;129:1322–9.
[22] Wriggers P, Nackenhorst U. Analysis and simulation of contact problems. Springer Verlag; 2006.
[23] Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress. J Mater Civ Eng 1990;1:46–9.
[24] Pallett P, Gorst N, Clark L, Thomas D. Friction resistance in temporary works materials. Concrete 2002;36:12–5.
[25] Wu MH. Numerical analysis of concrete filled steel tubes subjected to axial force [MS thesis]. Tainan (Taiwan, ROC): National Cheng Kung University; 2000.
[26] ASCE Task Committee on Concrete and Masonry Structure. State of the art report on finite element analysis of reinforced concrete. New York: ASCE; 1982.
[27] Mander JB, Priestley MJN, Park R. Theoretical stress–strain model for confined concrete. J Struct Eng 1988;114:1804–26.

QR CODE