簡易檢索 / 詳目顯示

研究生: 萬嵃升
Yen-shen Wan
論文名稱: 膨脹性螺環原酸酯單體之陽離子光聚合反應
Cationic Photopolymerization of Spiroorthoester Expanding Monomers
指導教授: 許應舉
Ying-gev Hsu
口試委員: 林江珍
none
陳燿騰
none
蕭勝輝
none
謝章興
none
陳志堅
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 65
中文關鍵詞: 陽離子光聚合反應膨脹性單體光起始劑螺環原酸酯體積膨脹光敏感劑區域特異性聚合反應立體規則性聚合物
外文關鍵詞: cationic photopolymerization
相關次數: 點閱:375下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螺環原酸酯—cis-2,3-tetramethylene-1,4,6-trioxaspiro[4,4]nonane (cis-TTN) (I),以(4-octylphenyl)phenyliodonium hexafluoroantimonate (OPIA)為光起始劑於紫外光(λmax: 254nm)照射下可進行陽離子光聚合反應,所得到的高分子之結構經鑑定為poly[(trans-2-OCHB)x’- (cis-2-OCHB)x”-(CHO)y] (II) ,其結構中包含poly(trans-2- oxycyclohexyl butanoate) (trans-2-OCHB)x’、poly(cis-2-oxycyclohexyl butanoate) (cis-2-OCHB)x”與poly-(1,2-cyclohexene oxide) (CHO)y三個型態的組成鏈段,並無純粹之聚醚酯(poly(ether ester)-poly(2-oxycyclohexyl butanoate)) ,於產物中被分離出來。然而,當將I加入經照光後的OPIA/Anthracene (A)起始系統時,所得產物為具立體規則性 (stereoregular) 的聚醚酯- -[trans-2-OCHB]n- (III)。I、II 及 III的化學結構已被鑑定,且I以OPIA與OPIA/A為起始劑之聚合反應機制也被個別的深入探討。於OPIA起始系統中,I是被 H+SbF6-—經由OPIA紫外光照射生成,引發起始反應,並最終生成產物II。於OPIA/A起始系統中I是以9-phenyl- 9,10-dihydroanthracen-10-ylium cation (PDAC)為起始劑—經由OPIA/ A以紫外光照射後生成,進行區域特異性(regionspecific)聚合反應而生成III。
相較於以路易士酸(Lewis acid)-BF3OEt2、CH3OSO2CF3、SnCl4為起始劑,進行傳統陽離子聚合反應得到的聚合物呈現出體積收縮現象,I進行陽離子光聚合反應所得之聚合物 II 及III呈現出體積膨脹現象,此體積膨脹現象,可歸因於I中C-2 及 C-3的順式(cis form)取代基於聚合反應過程中轉變為反式(trans form) 取代結構所致。


The spiroorthoester, cis-2,3-tetramethylene-1,4,6-trioxaspiro[4,4]- nonane (cis-TTN) (I), underwent cationic photopolymerization when exposed to UV light at 254 nm using (4-octylphenyl)phenyliodonium hexafluoroantimonate (OPIA) as a photoinitiator. The resulting polymer, poly[(trans-2-OCHB)x’-(cis-2-OCHB)x”-(CHO)y] (II) thus formed consisted of poly(trans-2-oxycyclohexyl butanoate) (trans-2-OCHB)x’, poly(cis-2-oxycyclohexyl butanoate) (cis-2-OCHB)x”, and poly(1,2-cyclo hexene oxide) (CHO)y segments, and no expected pure poly(ether ester), that is, poly(2-oxycyclohexyl butanoate), was isolated. While, when I was added to the UV exposed OPIA/Anthracene (A) initiating system, a stereoregular poly(ether ester), -[trans-2-OCHB]n- (III) was produced. The chemical structure of I, II and III were identified, and the mechanism of the polymerization in both initiating systems—OPIA and OPIA/A—were deduced, respectively. For the OPIA initiating system, I was initiated by H+SbF6-, which was obtained by photodecomposition of OPIA, to afford II. For the OPIA/A initiating system, I was initiated by the 9-phenyl-9,10-dihydroanthracen-10-ylium cation (PDAC), which was obtained by exposing a mixture of OPIA and anthracene to UV light at 254 nm, with a regiospecific polymerization to afford III.
The polymer II and III exhibited expansion in volume during cationic photopolymerization when compared to that obtained by conventional cationic polymerization using a Lewis acid (e.g., BF3OEt2, CH3OSO2CF3, or SnCl4) as an initiator, which demonstrated volume shrinkage during polymerization. The volume expansion of II and III is caused by the conversion of cis substitution at C-2 and C-3 in I to the trans form during polymerization.

中文摘要……………………………………………………..…………Ⅰ 英文摘要…………………………………………………….….………Ⅲ 誌謝……………………………………………………………….…….Ⅴ 目錄………………………………………………………….….………Ⅵ 附圖索引………………………………………………………..………Ⅷ 附表索引……………………………………………………….….……XI Chapter 1. INTRODUCTION………………………………………1 1.1 Introduction…………………… …...…………………….…………2 Chaper 2 Experimental Section………...……………………..……6 2.1 Materials…………………………………………………...…………7 2.2 Cationic Polymerization by Lewis Acid Initiator……………….……8 2.3 Cationic Photopolymerization Initiated by DPIs……….…….....……9 2.4 Cationic Photopolymerization with an OPIA/A Initiating System……………………...……..………………………….……..10 2.5 Identification of the PDAC Structure…………………………….....11 2.6 Degree of Monomeric Conversion…….……………………………12 2.7 Volume Change Test…………………………………….……….…13 2.8 Measurement……………………………………………………..…14 2.9 Calculations …………………………………………………….…..15 Chapter 3. RESULTS AND DISCUSSION………………………...16 3.1 Synthesis and Stereostructure of I…………………………………..17 3.2 Cationic Polymerization of I Initiated by Lewis Acids……………..20 3.3 Cationic Photopolymerization of I initiated by DPIs Sensitized with Nonaromatic Sensitizer……...………………………...……………23 3.3.1 Chemical Structure of Products………………………………..….24 3.3.2 Cationic Photopolymerization Mechanism…………………....….30 3.3.3 Volume Change During Cationic photopolymerization…...……...36 3.4 Cationic Photopolymerization of I Sensitized by Aromatic Sensitizer……………………………...………………………….....40 3.4.1 Structure of Polymer……………………………...…………….…42 3.4.2 Polymerization Mechanism……………………………………….44 3.4.2.1 UV Irradiation of OPIA ……………………...……………...….44 3.4.2.2 Polymerization Mechanism…………………………….....…….47 3.4.3 Volume Changes during Polymerization……………...…………..53 Chapter 4. CONCLUSIONS…………………………………….....56 4.1 Conclusions…………………………………………………………57 REFERENCES………………………………………………………...59 References…………………………………………..…………………..60 作者簡介………………………………………………………………..64 附件……………………………………………………………………..66

1. Robert, F.; Brady, J. R. J Macromol Sci Rev, Macromol Chem Phys 1992, 32, 135–181.
2. Takata, T.; Endo, T. In Expanding Monomers: Synthesis, Characterization, and Application; Sadhir K. R.; Luck R. M., Eds.; CRC: Boca Raton, 1992.
3. Trujillo, M.; Ge, J.; Lu, H.; Tanaka, J.; Stansbury, J. W. J Polym Sci Part A: Polym Chem 2006, 44, 3921–3929.
4. Carioscia, J. A.; Schneidewind, L.; Casey, O.; Ely, R.; Feeser, C.; Cramer, N.; Bowman C. N. J Polym Sci Part A: Polym Chem 2007, 45, 5686–5696.
5. Canadell, J.; Manteco’na, A.; Ca’diz, V. J Polym Sci Part A: Polym Chem 2007, 45, 4211–4224.
6. Nguyen, C. T.; Kim, D. P.; Hong, S. B. J Polym Sci Part A: Polym Chem 2008, 46, 725–732.
7. Morino, S.; Machida, S.; Yamashita, T.; Horie, K. J Phys Chem 1995, 99, 10280–10284.
8. Toriumi, A.; Herrmann, J. M.; Kawata, S. Opt Lett 1997, 22, 555–557.
9. Kada, T.; Obara, A.; Tanabe, T.; Miyata, S.; Liang, C. X.; Machida, H.; Kiso, K. J Appl Phys 2000, 87, 638–642.
10. Beeson, K. W.; Horn, K. A.; McFarland, M.; Yardley, S. T. Appl Phys Lett 1991, 58, 1955–1957.
11. Kudo, H.; Soga, T.; Suzuki, M,; Nishikubo, T. Macromolecules 2009, 42, 6818–6822
12. Bolln, C.; Frey, H.; Mϋihaupt, R. Macromolecules 1996, 29, 3111–3116.
13. Kume, M.; Maki, Y.; Ochiai, B.; Endo, T. J Polym Sci Part A: Polym Chem 2006, 44, 7040–7053.
14. Kume, M.; Hirano, A.; Ochiai, B.; Endo, T. J Polym Sci Part A: Polym Chem 2006, 44, 3666–3673.
15. Ochiai, B.; Nagasawa, T.; Asano, Y.; Nagai, D.; Sudo, A.; Endo, T. J Polym Sci Part A: Polym Chem 2007, 45, 2820–2826.
16. Bailey, W. J. J. Macromol. Sci., Chem. 1976, A9 (5), 849–856.
17. Bailey, W. J.; Sun, R. L. J Am Chem Soc Div Polym Chem Prepr 1972, 13, 281–286.
18. Uno, H.; Endo, T.; Okawara, M. J Polym Sci Polym Chem Ed 1985, 23, 63–67.
19. Decker, C. Prog Polym Sci 1996, 21, 593–650.
20. Fouassier, J. P. Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications; Hanser: New York, 1995.
21. Ge, J.; Trujillo, M.; Stansbury, J. W. Macromolecules 2006, 39, 8968–8976.
22. Hsu, Y. G.; Wan, Y. S. J Polym Sci Part A: Polym Chem 2009, 47, 3680–3690.
23. Crivello, J. V.; Lam, J. H. W. Macromolecules 1977, 10, 1307–1315.
24. Decker, C.; Nguyen Thi Viet, T.; Decker, D.; Weber-Koehl, E. Polymer 2001, 42, 5531–5541.
25. Ya_gci, Y.; Reetz, I. Prog Polym Sci 1998, 23, 1485–1538.
26. Kasapoglu, F.; Yagci, Y. Macromol Rapid Commun 2002, 23, 567–570.
27. DeVoe, R. J.; Sahyun, M. R. V.; Schmidt, E.; Serpone, N.; Sharma, D. K. Can J Chem 1988, 66, 319–324.
28. Nelson, E. W.; Carter, T. P.; Scranton, A. B. Macromolecules 1994, 27, 1013–1019.
29. Nelson, E. W.; Carter, T. P.; Scranton, A. B. J Am Chem Soc Div Polym Chem Prepr 1993, 34, 705–712.
30. Nelson, E. W.; Carter, T. P.; Scranton, A. B. J Polym Sci Part A: Polym. Chem. 1995, 33, 247–256.
31. Trathnigg, B.; Hippmann, G.; Junek, H. Angew Makromol Chem 1982, 105, 1–9.
32. Kamata, K.; Kasai, J.; Yamaguchi, K.; Misuno, N. Org Lett 2004, 6, 3577–3580.
33. Chikaoka, S.; Takada, T.; Endo, T. J Polym Sci Part A: Polym Chem 1990, 28, 3101–3106.
34. Hsu, Y. G.; Chen, K. M. Makromol Chem 1990, 191, 999–1011.
35. Harris, C. D.; Holder, A. J.; Eick, J. D.; Chappelow, C. C. Cryst. Growth Des. 2003, 3, 239–246.
36. Takata, T.; Sanda, F.; Ariga, T.; Nemoto, H.; Endo, T. Macromol Rapid Commun. 1997, 18, 461–469.
37. Manivannan, G.; Fousassier, J. P. J Polym Sci Part A: Polym Chem 1991, 29, 1113–1124.
38. Bulut, U.; Crivello, J. V. Macromolecules 2005, 38, 3584–3595.
39. Chikaoka, S.; Takata, T.; Endo, T. Macromolecules 1992, 25, 625–628.
40. Silverstein, R. M. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, 1998; Chapter 4.
41. Matyjaszewski, K. J Polym Sci Polym Chem Ed 1984, 22, 29–40.
42. Matyjaszewski, K. Rev Macromol Chem Phys 1986, C26, 1–32.
43. Pohlers, G.; Virdee, S.; Scaiano, J. C.; Sinta, R. Chem. Mater. 1996, 8, 2654–2658.
44. Taranto, A. G.; Carneiro, J. W.; de, M.; Araujo, M. T. Bioorg. Med. Chem. 2006, 14, 1546–1557.
45. Smith, M. B.; March, J. March’s Advanced Organic Chemistry, 6th ed.; Wiley-Interscience: Hoboken, NJ, 2006, 356–394.
46. Laszlo, P.; Teston., M. J. Am. Chem. Soc. 1990, 112, 8750–8754.
47. Deters, J. F.; McCusker, P. A.; Pilger, R. C., Jr. J. Am. Chem. Soc. 1968, 90, 4583–4585.
48. Yonet, N.; Yagci, Y.; Ochiai, B.; Endo, T. Macromolecules 2003, 36, 9257–9259.
49. Ariga, T.; Takata, T.; Endo, T. Macromolecules 1997, 30, 737–744.
50. Jensen, T. R.; O’Donnell, J. J., III; Marks, T. J. Organometallics 2004, 23, 740–754.
51. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953, 399–431.

QR CODE