簡易檢索 / 詳目顯示

研究生: 林靖翰
Ching-Han Lin
論文名稱: 基於量子立方域採樣神經網路之影像分類研究
Image Classification Using Qube Sphere Sampling-based Quantum Neural Network
指導教授: 陳永耀
Yung-Yao Chen
口試委員: 花凱龍
Kai-Lung Hua
吳晉賢
Chin-Hsien Wu
夏至賢
Chih-Hsien Hsia
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 量子立方域量子採樣量子機器學習量子神經網路
外文關鍵詞: QubeNet, Qube Sphere, Quantum Sampling, Quantum Machine Learning
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文中介紹了量子電腦與量子機器學習發展至今的背景。提出基於量子立方域採樣的量子神經網路架構(QubeNet),也定義出量子立方域(Qube Sphere)。並利用Qube Sphere量子空間在量子資料中採樣特徵,再透過量子機器學習的方式來優化量子神經網路,使得QubeNet具備更強的採樣能力,能採樣出相異類別的重要類別特徵,達成影像辨識效果。此方法在量子神經網路領域中,首次成功地具備直接對影像進行辨識並達到良好效果的能力。
QubeNet屬於極輕量化的量子網路架構,總計只使用3 KB的權重檔,便能在兩類分類任務中,取得97.94 %的辨識正確率。QubeNet有別於現今大多數量子神經網路演算法,不僅能直接對影像進行分類任務,還符合現今量子電腦上可執行的量子位元數量,能在現行量子電腦中執行,為一個全新的量子機器學習架構概念。此外,本篇提出的架構具備可擴展性,其運算能力會隨著邏輯量子位元的數量增加而獲得指數性提升,未來大型量子電腦出現後此方法仍然可以使用,並且將獲得更好的效果。


In this thesis, We introduce the background on the development of quantum computers and quantum machine learning to date. A quantum neural network architecture (QubeNet) based on Qube Sphere sampling is proposed, and a quantum space Qube Sphere is defined. We use Qube Sphere quantum space to sample the features in quantum data, and then optimize the quantum neural network through quantum machine learning, so that QubeNet has a stronger sampling ability, and can sample important features of different categories to achieve the effect of image recognition.
QubeNet is an extremely lightweight quantum network architecture. It uses only a 3 KB weights file in total and achieves 97.94% recognition accuracy in two classes of image classification tasks. Unlike most quantum neural network algorithms today, QubeNet can not only classify images directly but also match the number of qubits that current quantum computers can perform. In addition, our proposed architecture is scalable, its computing power grows exponentially with the number of logical qubits, and will achieve better results when large-scale quantum computers emerge in the future.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒言 1 1.1量子電腦近期發展 1 1.2量子特性與量子運算 4 1.3量子電腦優缺點 6 1.4動機與貢獻 10 1.5內文介紹 11 第二章 量子立方域採樣神經網路(QubeNet) 12 2.1量子神經網路概念 12 2.2現階段量子神經網路在影像辨識上的作法 13 2.3分析與比較 17 2.4 QubeNet概念 18 第三章 網路架構與流程 22 3.1 QubeNet架構 22 3.1.1架構說明 22 3.1.2訓練流程 24 3.1.3推論流程 24 3.2 Qube Sphere轉換 25 3.2.1 Qube sphere kernel 25 3.2.2 傅立葉編碼 26 3.3量子電路 30 3.3.1 量子閘 30 3.3.2 量子Ansatz 31 3.4類別特徵轉換 33 3.5輸出分類器 35 3.6鑑別函數 36 第四章 實作細節與實驗方法 38 4.1 資料集 38 4.1.1 MNIST 38 4.1.2 FashionMNIST 39 4.1.3 CIFAR-10 40 4.1.4 STL-10 41 4.2 實作細節 42 4.3 實驗方法 46 4.3.1 Sample次數 46 4.3.2類別數量 46 4.4 評估方式 47 第五章 實驗結果與未來方向 48 5.1 實驗結果 48 5.1.1 訓練結果與分析 48 5.1.2 採樣結果 51 5.1.3 分類結果 56 5.2 未來改善方向 57 5.2.1 由量子電路改善 57 5.2.2 由輸出分類器改善 57 第六章 結論 58 參考文獻 59

[1] A. S. Holevo, "Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel", Problems Inform. Transmission, Vol. 9, no. 3, pp. 177-183, 1973.
[2] R. Ingarden, "Quantum information theory", Reports on Mathematical Physics, vol. 10, no. 1, pp. 43-72, 1976. Available: 10.1016/0034-4877(76)90005-7.
[3] R. Poplavskiĭ, "Thermodynamic models of information processes", Soviet Physics Uspekhi, vol. 18, no. 3, pp. 222-241, 1975. Available: 10.1070/pu1975v018n03abeh001955.
[4] G. Brassard, "Brief history of quantum cryptography: a personal perspective," IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, pp. 19-23, 2005. doi: 10.1109/ITWTPI.2005.1543949.
[5] A. Zeilinger, "Quantum entanglement and information," Quantum Electronics and Laser Science Conference (QELS 2000). Technical Digest. Postconference Edition. TOPS Vol. 40 (IEEE Cat. No.00CH37089), p. 163, 2000.
[6] D. Deutsch, "Quantum theory, the Church–Turing principle and the universal quantum computer", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400, no. 1818, pp. 97-117, 1985. Available: 10.1098/rspa.1985.0070.
[7] P. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM Review, vol. 41, no. 2, pp. 303-332, 1999. Available: 10.1137/s0036144598347011.
[8] L. Grover, "A fast quantum mechanical algorithm for database search", In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212-219, July 1996
[9] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124-134, 1994. doi: 10.1109/SFCS.1994.365700.
[10] F. Arute et al., "Quantum supremacy using a programmable superconducting processor", Nature, vol. 574, no. 7779, pp. 505-510, 2019. Available: 10.1038/s41586-019-1666-5.
[11] P. Ball, "Physicists in China challenge Google’s ‘quantum advantage’", Nature, vol. 588, no. 7838, pp. 380-380, 2020. Available: 10.1038/d41586-020-03434-7.
[12] A. Zwerver et al., "Qubits made by advanced semiconductor manufacturing", Nature Electronics, vol. 5, no. 3, pp. 184-190, 2022. Available: 10.1038/s41928-022-00727-9.
[13] "IBM Quantum Computing | Roadmap", Ibm.com, 2022. [Online]. Available: https://www.ibm.com/quantum/roadmap. [Accessed: 01- Jul- 2022].
[14] A. Challans, "Quantum Computing Market Map and Data 2022", The Quantum Insider, 2022. [Online]. Available: https://thequantuminsider.com/2022/05/09/quantum-computing-market-map-and-data-2022/. [Accessed: 01- Jul- 2022].
[15] D. Griffiths, Introduction to quantum mechanics. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.
[16] F. Bloch, "Nuclear Induction", Physical Review, vol. 70, no. 7-8, pp. 460-474, 1946. Available: 10.1103/physrev.70.460 [Accessed 1 July 2022].
[17] T. Prickett Morgan, "At Long Last, HPC Officially Breaks The Exascale Barrier", The Next Platform, 2022. [Online]. Available: https://www.nextplatform.com/2022/05/30/at-long-last-hpc-officially-breaks-the-exascale-barrier/. [Accessed: 01- Jul- 2022].
[18] "ORNL’s Frontier First to Break the Exaflop Ceiling", Top500.org, 2022. [Online]. Available: https://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/. [Accessed: 01- Jul- 2022].
[19] M. Nielsen et al., "Quantum computation and quantum information", pp. 558-559, 2002.
[20] T. Ladd et al., "Quantum computers", Nature, vol. 464, no. 7285, pp. 45-53, 2010. Available: 10.1038/nature08812 [Accessed 1 July 2022].
[21] I. Chiorescu et al., "Coherent Quantum Dynamics of a Superconducting Flux Qubit", Science, vol. 299, no. 5614, pp. 1869-1871, 2003. Available: 10.1126/science.1081045.
[22] B. Kane, "A silicon-based nuclear spin quantum computer", Nature, vol. 393, no. 6681, pp. 133-137, 1998. Available: 10.1038/30156.
[23] I. Fushman et al., "Controlled Phase Shifts with a Single Quantum Dot", Science, vol. 320, no. 5877, pp. 769-772, 2008. Available: 10.1126/science.1154643.
[24] J. Home et al., "Complete Methods Set for Scalable Ion Trap Quantum Information Processing", Science, vol. 325, no. 5945, pp. 1227-1230, 2009. Available: 10.1126/science.1177077.
[25] D. Wineland et al., "Experimental issues in coherent quantum-state manipulation of trapped atomic ions", Journal of Research of the National Institute of Standards and Technology, vol. 103, no. 3, p. 259, 1998. Available: 10.6028/jres.103.019.
[26] L. Duan et al., "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions", Physical Review Letters, vol. 92, no. 12, 2004. Available: 10.1103/physrevlett.92.127902.
[27] C. Nayak et al., "Non-Abelian anyons and topological quantum computation", Reviews of Modern Physics, vol. 80, no. 3, pp. 1083-1159, 2008. Available: 10.1103/revmodphys.80.1083.
[28] L. Childress et al., "Diamond NV centers for quantum computing and quantum networks", MRS Bulletin, vol. 38, no. 2, pp. 134-138, 2013. Available: 10.1557/mrs.2013.20.
[29] S. Kak, "Quantum Neural Computing", Advances in Imaging and Electron Physics, pp. 259-313, 1995. Available: 10.1016/s1076-5670(08)70147-2 [Accessed 1 July 2022].
[30] E. Behrman et al., "A quantum dot neural network.", Proceedings of the 4th Workshop on Physics of Computation, pp. 22-24, 1996.
[31] G. Toth et al., "Quantum cellular neural networks", Superlattices and Microstructures, vol. 20, no. 4, pp. 473-478, 1996. Available: 10.1006/spmi.1996.0104.
[32] D. Ventura, "Quantum associative memory", Information Sciences, vol. 124, no. 1-4, pp. 273-296, 2000. Available: 10.1016/s0020-0255(99)00101-2 [Accessed 1 July 2022].
[33] N. Kouda et al., "Qubit neural network and its learning efficiency", Neural Computing and Applications, vol. 14, no. 2, pp. 114-121, 2005. Available: 10.1007/s00521-004-0446-8.
[34] A. Harrow et al., "Quantum Algorithm for Linear Systems of Equations", Physical Review Letters, vol. 103, no. 15, 2009. Available: 10.1103/physrevlett.103.150502 [Accessed 2 July 2022].
[35] S. Lloyd et al., "Quantum principal component analysis", Nature Physics, vol. 10, no. 9, pp. 631-633, 2014. Available: 10.1038/nphys3029 [Accessed 2 July 2022].
[36] P. Rebentrost et al. "Quantum Support Vector Machine for Big Data Classification", Physical Review Letters, vol. 113, no. 13, 2014. Available: 10.1103/physrevlett.113.130503.
[37] I. Kerenidis et al. "q-means: A quantum algorithm for unsupervised machine learning." Advances in Neural Information Processing Systems 32, 2019.
[38] J. Stokes et al., "Quantum Natural Gradient", Quantum, vol. 4, p. 269, 2020. Available: 10.22331/q-2020-05-25-269.
[39] K. Mitarai et al., "Quantum circuit learning", Physical Review A, vol. 98, no. 3, 2018. Available: 10.1103/physreva.98.032309.
[40] R. Sweke et al., "Stochastic gradient descent for hybrid quantum-classical optimization", Quantum, vol. 4, p. 314, 2020. Available: 10.22331/q-2020-08-31-314.
[41] J. C. Spall, “Adaptive stochastic approximation by the simultaneous perturbation method,” in IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1839-1853, Oct 2020, doi: 10.1109/TAC.2000.880982.
[42] Y. LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition", Neural Computation, vol. 1, no. 4, pp. 541-551, 1989. Available: 10.1162/neco.1989.1.4.541 [Accessed 1 July 2022].
[43] I. Cong et al., "Quantum convolutional neural networks", Nature Physics, vol. 15, no. 12, pp. 1273-1278, 2019. Available: 10.1038/s41567-019-0648-8 [Accessed 1 July 2022].
[44] G. Vidal, "Class of Quantum Many-Body States That Can Be Efficiently Simulated", Physical Review Letters, vol. 101, no. 11, 2008. Available: 10.1103/physrevlett.101.110501 [Accessed 3 July 2022].
[45] M. Henderson et al., "Quanvolutional neural networks: powering image recognition with quantum circuits", Quantum Machine Intelligence, vol. 2, no. 1, 2020. Available: 10.1007/s42484-020-00012-y.
[46] A. Mari et al., "Transfer learning in hybrid classical-quantum neural networks", Quantum, vol. 4, p. 340, 2020. Available: 10.22331/q-2020-10-09-340.
[47] K. He et al., "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. doi: 10.1109/CVPR.2016.90.
[48] I. Goodfellow et al., "Generative adversarial nets," Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014), pp. 2672-2680, 2014.
[49] H. Huang et al., "Experimental Quantum Generative Adversarial Networks for Image Generation", Physical Review Applied, vol. 16, no. 2, 2021. Available: 10.1103/physrevapplied.16.024051.
[50] H. Buijs et al., "Implementation of a fast Fourier transform (FFT) for image processing applications", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 22, no. 6, pp. 420-424, 1974. Available: 10.1109/tassp.1974.1162620.
[51] N. Qian, "On the momentum term in gradient descent learning algorithms", Neural Networks, vol. 12, no. 1, pp. 145-151, 1999. Available: 10.1016/s0893-6080(98)00116-6 [Accessed 10 July 2022].
[52] P. de Boer et al., "A Tutorial on the Cross-Entropy Method", Annals of Operations Research, vol. 134, no. 1, pp. 19-67, 2005. Available: 10.1007/s10479-005-5724-z [Accessed 13 July 2022].
[53] F. Milletari et al., "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation," 2016 Fourth International Conference on 3D Vision (3DV), pp. 565-571, 2016. doi: 10.1109/3DV.2016.79.
[54] Y. LeCun, 1998, "The MNIST database of handwritten digits." [Online]. Available. http://yann. lecun. com/exdb/mnist/. [Accessed: 14- Jul- 2022].
[55] H. Xiao et al., "Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.", 2017, [Online]. Available: arXiv:1708.07747 [cs.LG]. [Accessed: 14- Jul- 2022].
[56] A. Krizhevsky, "Learning multiple layers of features from tiny images, " M.S. thesis, Department of Computer Science, University of Toronto, 2009, [Online]. Available. https://www.cs.toronto.edu/~kriz/cifar.html. [Accessed: 14- Jul- 2022].
[57] Coates et al., "An analysis of single-layer networks in unsupervised feature learning." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011, [Online]. Available. http://cs.stanford.edu/~acoates/stl10. [Accessed: 14- Jul- 2022].
[58] "Compute resources", IBM Quantum Compute Resources. [Online]. Available: https://quantum-computing.ibm.com/services/resources. [Accessed: 15- Jul- 2022].
[59] A. Paszke et al., "PyTorch: An Imperative Style, High-Performance Deep Learning Library," in Advances in Neural Information Processing Systems 32, pp. 8024-8035, 2019.
[60] V. Bergholm et al., "PennyLane: Automatic differentiation of hybrid quantum-classical computations.", 2018, [Online]. Available: arXiv:1811.04968 [quant-ph]. [Accessed: 14- Jul- 2022].
[61] C. Cheng et al., "QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates", 2022, [Online]. Available: arXiv:2206.01345 [cs.ET]. [Accessed: 18- Jul- 2022].
[62] Y. Du et al., "Expressive power of parametrized quantum circuits", Physical Review Research, vol. 2, no. 3, 2020. Available: 10.1103/physrevresearch.2.033125 [Accessed 18 July 2022].
[63] E. Cambria et al., "Extreme Learning Machines [Trends & Controversies]", IEEE Intelligent Systems, vol. 28, no. 6, pp. 30-59, 2013. Available: 10.1109/mis.2013.140.
[64] T. Kohonen, "Self-organized formation of topologically correct feature maps", Biological Cybernetics, vol. 43, no. 1, pp. 59-69, 1982. Available: 10.1007/bf00337288.
[65] G. Alex et al., " Neural Turing Machines", 2014, [Online]. Available: arXiv:1410.5401v2 [cs.NE]. [Accessed: 18- Jul- 2022].

無法下載圖示 全文公開日期 2027/08/02 (校內網路)
全文公開日期 2027/08/02 (校外網路)
全文公開日期 2027/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE