簡易檢索 / 詳目顯示

研究生: 張芳瑜
Fang-Yu Chang
論文名稱: 製備與評估包覆氯己定微米顆粒應用於口腔藥物制放之可行性
Preparation and Evaluation of the Chlorhexidine Loaded Microparticles for Oral Drug Delivery
指導教授: 高震宇
Chen-Yu Kao
口試委員: 蔡協致
Hsieh-Chih Tsai
黃仁勇
Ren-Yeong Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 口腔藥物制放氯己定組織調理材白色念珠菌齒齦視紫單胞菌
外文關鍵詞: tissue conditioner, Chlorhexidine, oral drug delivery, Candida albicans, Porphyromonas gingivalis
相關次數: 點閱:197下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Chlorhexidine為牙科常見用於控制口腔衛生之抗菌藥物,目前已知Chlorhexidine可有效降低革蘭氏陽性菌和革蘭氏陰性菌的繁殖,但其對念珠菌的抑制效果仍不明確。本研究希望能結合藥物制放系統之概念,利用單一乳化法與多重乳化法,分別包覆Chlorhexidine及Chlorhexidine gluconate兩種不同親疏水性之藥物,製備與評估適合應用於組織調理材粉劑之高分子藥物微粒,發展一可長效釋放抗菌藥物之口腔藥物制放系統,了解藥物在藥物制放系統中的釋放特性,並探討Chlorhexidine及Chlorhexidine gluconate對白色念珠菌以及齒齦視紫單胞菌抑菌能力之效果,探討其同時治療義齒性口腔炎與抑制口腔常見厭氧菌之可行性。
研究結果顯示,含Chlorhexidine之高分子微粒其粒徑為17.60 ± 1.59 μm,以此微粒所製備之含藥組織調理材呈現長效緩慢釋放,可持續釋放兩周之久,而由抑菌實驗得知,在未釋放前之含藥組織調理材可同時抑制白色念珠菌及齒齦視紫單胞菌的生長,但其經釋放後只對齒齦視紫單胞菌有抑菌效果,可維持長效抑菌能力達十四天。


Chlorhexidine has been used in control the hygiene in oral cavity, however, the inhibitory effect of Chlorhexidine on Candida albicans is not clear. In this study, we developed a novel drug delivery system of Chlorhexidine, and evaluate its anti-fungal and anti-bacterial properties. The microparticles containing Chlorhexidine(CHX)or Chlorhexidine gluconate(CHG)were prepared and analyzed. We used both single emulsion method and double emulsion method to prepare CHX-loaded and CHG-loaded microparticles. These microparticles were used to prepare the drug loaded tissue conditioner. And the growth of Candida albicans and Porphyromonas gingivalis were used to evaluate the anti-fungal and anti-bacterial properties of drug loaded tissue conditioner. The preliminary data showed that the sizes of CHX-loaded microparticles were 17.60 ± 1.59 μm, and the encapsulation efficiency were 20.88 ± 1.76 %, respectively. The anti-bacterial drug loaded tissue conditioner was released in a relatively slow pattern(20% of CHX was released within 14 days). Moreover, it could inhibit both the growth of Candida albicans and Porphyromonas gingivalis before drug release, but only maintain its effect for Porphyromonas gingivalis at least 14 days.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 縮寫表 VIII 圖表索引 X 第一章 緒論 1 第二章 文獻回顧 4 2.1. 口腔微生物叢(Oral microflora) 4 2.1.1. 微生物叢在人體的分布 4 2.1.2. 口腔微生物叢在各年齡的變化 6 2.1.3. 口腔微生物叢與疾病的關係 7 2.2. 高齡化社會 8 2.2.1. 人口老化 8 2.2.2. 老年人口之健康問題 9 2.2.3. 老年人口之口腔問題 9 2.3. 牙周疾病 10 2.3.1. 齒齦視紫單胞菌(Porphyromonas gingivalis) 10 2.3.2. 牙周病的發生 11 2.4. 念珠菌相關義齒性口腔炎 13 2.4.1. 白色念珠菌(Candida albicans) 13 2.4.2. 念珠菌相關義齒性口腔炎的發生 14 2.4.3. 念珠菌相關義齒性口腔炎之治療方法 15 2.5. 組織調理材 16 2.5.1. 組織調理材之成分 17 2.5.2. 凝膠化作用機制 17 2.5.3. 含藥之組織調理材 18 2.6. 藥物傳遞系統 18 2.6.1. 藥物傳遞原理 19 2.6.2. 口腔藥物傳遞系統 19 2.6.3. 高分子之藥物載體 21 2.7. 氯己定(Chlorhexidine) 23 第三章 實驗材料與方法 25 3.1. 研究設計 25 3.1.1. 實驗理論 25 3.1.2. 實驗設計 25 3.1.3. 實驗架構與流程 27 3.2. 藥物藥劑、試驗菌株與培養試劑及設備 28 3.2.1. 藥物藥劑 28 3.2.2. 試驗菌株與培養試劑 29 3.2.3. 實驗儀器設備 29 3.3. 微米顆粒製備 31 3.3.1. 製備CHX-PEMA MPs 31 3.3.2. 製備CHG-PEMA MPs 32 3.4. 組織調理材製備 32 3.4.1. 製備Blank TC 32 3.4.2. 製備Free CHX/TC 33 3.4.3. 製備Free CHG/TC 33 3.4.4. 製備CHX-PEMA TC 33 3.5. 藥物劑型量測與分析 34 3.5.1. 包覆效率評估 34 3.5.2. 表面形態觀察 35 3.5.3. 表面電位(zeta potential)測量 36 3.5.4. 釋放效率評估 36 3.6. 測量凝膠化時間 37 3.7. 組織調理材之抑菌能力評估 38 3.7.1. 菌株培養 38 3.7.2. 菌數計算(生菌數法, CFU/mL) 41 3.7.3. 有效抑菌之菌液濃度檢測 42 3.7.4. 抑菌環測試 43 3.8. 統計學分析(Statistical analysis) 43 第四章 結果 44 4.1. 微米顆粒特性評估 44 4.1.1. 微米顆粒之表面型態與粒徑大小分析 44 4.1.2. 藥物包覆效率評估 51 4.1.3. 表面電位(zeta potential)測定 55 4.2. 組織調理材之藥物制放系統效能評估 56 4.2.1. 藥物均勻度評估 56 4.2.2. 組織調理材藥物釋放效能評估 58 4.3. 組織調理材之抑菌能力評估 64 4.3.1. 有效抑菌之菌液濃度檢測 64 4.3.2. 抑菌環測試 66 4.4. 凝膠化時間測試 77 第五章 討論 80 5.1. 微米顆粒特性與包覆效率探討 80 5.2. 藥物釋放效率探討 82 5.3. 抑菌能力探討 83 5.3.1. C. albicans之抑菌能力探討 83 5.3.2. P. gingivalis之抑菌能力探討 83 5.4. 凝膠化時間探討 84 第六章 結論 87 未來展望 88 參考文獻 89 附錄 95

1. Petersen, P.E., World Health Organization global policy for improvement of oral health– World Health Assembly 2007. International Dental Journal, 2008. 58: p. 115-121.
2. Dewhirst, F.E., et al., The human oral microbiome. J Bacteriol, 2010. 192(19): p. 5002-17.
3. Paster, B.J., et al., Bacterial diversity in human subgingival plaque. J Bacteriol, 2001. 183(12): p. 3770-83.
4. Jiao, Y., M. Hasegawa, and N. Inohara, The Role of Oral Pathobionts in Dysbiosis during Periodontitis Development. J Dent Res, 2014. 93(6): p. 539-546.
5. Madhav, N.V., et al., Orotransmucosal drug delivery systems: a review. J Control Release, 2009. 140(1): p. 2-11.
6. 行政院國家發展委員會, 中華民國2012年至2060年人口推計. 2012.
7. 行政院衛生福利部國民健康署, 國民口腔健康第一期五年計畫. 2006.
8. Figueiral, M.H., et al., Denture-related stomatitis: identification of aetiological and predisposing factors - a large cohort. J Oral Rehabil, 2007. 34(6): p. 448-55.
9. Salerno, C., et al., Candida-associated denture stomatitis. Medicina Oral Patologia Oral y Cirugia Bucal, 2011: p. e139-e143.
10. Kolenbrander, P.E., Oral microbial communities : genomic inquiry and interspecies communication. Washington, D.C. : ASM Press, 2011.
11. Jain, N., et al., Recent approaches for the treatment of periodontitis. Drug Discov Today, 2008. 13(21-22): p. 932-43.
12. Chow, C.K.W. and D.W. Matear, Clinical Efficacy of Antifungal Agent in Tissue Conditioner in Treating Oral Candidiasis-A Pilot Study. Middle East Journal of Age and Ageing, 2008. 5(1): p. 3-9.
13. Radnai, M., et al., Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology, 2010. 27(4): p. 292-6.
14. Masquio Fiorentino, F.A., M.A. Correa, and H.R. Nunes Salgado, Analytical Methods for the Determination of Chlorhexidine: A Review. Critical Reviews in Analytical Chemistry, 2010. 40(2): p. 89-101.
15. Chow, J., H. Tang, and S.K. Mazmanian, Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol, 2011. 23(4): p. 473-80.
16. Lee, Y.K. and S.K. Mazmanian, Has the microbiota played a critical Role in the Evolution of the Adaptive Immune System. Science, 2010. 330: p. 1768-1773.
17. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-20.
18. Bik, E.M., et al., Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A, 2006. 103(3): p. 732-7.
19. Gao, Z., et al., Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A, 2007. 104(8): p. 2927-32.
20. SOCRANSKY, S.S. and A.D. HAFFAJEE, Periodontal microbial ecology. Periodontology 2000, 2005. 38: p. 135–187.
21. Darby, M.L., Mosby's comprehensive review of dental hygiene. 2012, St. Louis, Mo.: Elsevier/Mosby.
22. Bagg, J., Essentials of microbiology for dental students. 2006, New York: Oxford University Press.
23. 孫安迪, 牙齒與口腔疾病. 1993, [臺北縣]中和市: 吳氏圖書總經銷.
24. Seymour, G.J., et al., Relationship between periodontal infections and systemic disease. Clinical Microbiology and Infection, 2007. 13: p. 3-10.
25. Beck, J.D. and S. Offenbacher, Systemic effects of periodontitis: Epidemiology of periodontal disease and cardiovascular disease. Journal of Periodontology, 2005. 76(11): p. 2089-2100.
26. Scannapieco, F.A., Role of oral bacteria in respiratory infection. Journal of Periodontology, 1999. 70(7): p. 793-802.
27. 行政院衛生福利部社會及家庭署, 人口政策白皮書. 2013.
28. 行政院衛生福利部國民健康署, 老人健康促進計畫(2009-2012). 2009.
29. 行政院衛生福利部國民健康署, 94-95年台灣地區45歲以上口腔狀態變化狀況研究. 2006.
30. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson, Periodontal diseases. The Lancet, 2005. 366(9499): p. 1809-1820.
31. Holt, S.C., et al., Virulence factors of Porphyromonas gingivalis. Periodontology 2000, 1999. 20: p. 168-238.
32. Dorn, B.R., W.A. Dunn, and A. Progulske-Fox, Invasion of human coronary artery cells by periodontal pathogens. Infection and Immunity, 1999. 67(11): p. 5792-5798.
33. Lamont, R.J. and O. Yilmaz, In or out: the invasiveness of oral bacteria. Periodontology 2000, 2002. 30: p. 61-69.
34. Kraneveld, E.A., et al., The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS One, 2012. 7(8): p. e42770.
35. Naglik, J.R., et al., Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect, 2011. 13(12-13): p. 963-76.
36. WILLIAMS, D.W., et al., Candida biofilms and oral candidosis- treatment and prevention. Periodontology 2000, 2011. 55: p. 250–265.
37. Webb, B.C., et al., Candida-associated denture stomatitis. Aetiology and management- A review- Part1. Factors influencing distribution of candida species in the oral cavity. Australian Dental Journal, 1998. 43: p. 45-50.
38. Barbeau, J., et al., Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2003. 95(1): p. 51-59.
39. Bilhan, H., et al., The role of Candida albicans hyphae and Lactobacillus in denture-related stomatitis. Clin Oral Investig, 2009. 13(4): p. 363-8.
40. Cross, L.J., et al., A comparison of fluconazole and itraconazole in the management of denture stomatitis a pilot study. Journal of Dentistry, 1998. 26: p. 657-664.
41. DeBeule, K., Itraconazole: Pharmacology, clinical experience and future development. International Journal of Antimicrobial Agents, 1996. 6(3): p. 175-181.
42. Lytle, R.B., Complete denture construction based on a study of the deformation of the underlying soft tissues. The Journal of Prosthetic Dentistry, 1959. 9(4): p. 539-551.
43. Wilson, H.J., Tissue Conditioners and Functional Impression Materials. Journal of British Dental, 1966. 59(10): p. 1037–1038.
44. 羅濟生, 製備與評估具藥物釋放功能之牙科組織調理材, 醫學工程研究所. 2012, 國立臺灣科技大學: 台北市. p. 128.
45. DW, J., et al., Chemical and molecular weight analyses of prosthodontic soft polymers. Journal of dental research 1991. 70(5): p. 874-879.
46. Wilson, J., In vitro loss of alcohol from tissue conditioners. Int J Prosthodont, 1992. 5(1): p. 17-21.
47. Jones, D.W., et al., Dental soft polymers: plasticizer composition and leachability. Dental Materials, 1988. 4(1): p. 1-7.
48. Hong, G., et al., Effect of PMMA polymer on the dynamic viscoelasticity and plasticizer leachability of PEMA-based tissue conditioners. Dental Materials Journal, 2010. 29(4): p. 374-380.
49. Murata, H., et al., Viscoelasticity of dental tissue conditioners during the sol-gel transition. J Dent Res, 2005. 84(4): p. 376-81.
50. Braden, M., Tissue conditioners: I. Composition and structure. J Dent Res, 1970. 49(1): p. 145-8.
51. Braden, M., Tissue conditioners: II. Rheologic properties. J Dent Res, 1970. 49(3): p. 496-501.
52. Ueshige, Y.A.M., et al., Dynamic viscoelastic properties of antimicrobial tissue conditioners. Journal of Dentistry, 1999. 2: p. 517-522.
53. Matsuura, T., et al., Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. Journal of Dentistry, 1997. 25(5): p. 373-377.
54. Geerts, G., M.E. Stuhlinger, and N.J. Basson, Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: A pilot study. Journal of Oral Rehabilitation, 2008. 35(9): p. 664-669.
55. 薛敬和, 生命科學與工程. 2nd ed. 2012, [新竹縣]竹北市: 百晴文化科技出版股份有限公司.
56. Li, X. and B.R. Jasti, Design of controlled release drug delivery systems. 2006, New York: McGraw-Hill.
57. Allen, T.M. and P.R. Cullis, Drug delivery systems: entering the mainstream. Science, 2004. 303(5665): p. 1818-22.
58. Paderni, C., et al., Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012. 114(3): p. e25-34.
59. Kockisch, S., et al., Mucoadhesive, triclosan-loaded polymer microspheres for application to the oral cavity: preparation and controlled release characteristics. Eur J Pharm Biopharm, 2005. 59(1): p. 207-16.
60. Smart, J.D., The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev, 2005. 57(11): p. 1556-68.
61. Grund, S., M. Bauer, and D. Fischer, Polymers in Drug Delivery-State of the Art and Future Trends. Advanced Engineering Materials, 2011. 13(3): p. B61-B87.
62. Pillai, O. and R. Panchagnula, Polymers in drug delivery. Current Opinion in Chemical Biology 2001. 5: p. 447–451.
63. Marcucci, F. and F. Lefoulon, Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discovery Today, 2004. 9(5): p. 219-228.
64. Fu, Y. and W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion on Drug Delivery, 2010. 7(4): p. 429-444.
65. Hong, G., et al., The dynamic viscoelasticity and plasticizer leachability of tissue conditioners. Gerodontology, 2012. 29(4): p. 284-91.
66. Chua, E.G., et al., Antifungal effectiveness of various intracanal medicaments against Candida albicans: an ex-vivo study. BMC Oral Health, 2014. 14: p. 53.
67. Briner, W.W., G.A. Kayrouz, and M.X. Chanak, Comparative antimicrobial effectiveness of a substantive (0.12% chlorhexidine) and a nonsubstantive (phenolic) mouthrinse in vivo and in vitro. Compendium, 1994. 15(9): p. 1158, 1160, 1162 passim; quiz 1170.
68. Fletcher, N., et al., Prevention of perioperative infection. J Bone Joint Surg Am, 2007. 89(7): p. 1605-18.
69. Mimoz, O., et al., Chlorhexidine-based antiseptic solution vs alcohol-based povidone-iodine for central venous catheter care. Arch Intern Med, 2007. 167(19): p. 2066-72.
70. Eick, S., et al., Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int, 2011. 42(8): p. 687-700.
71. 胡德., 高分子物理與機械性質. 1990, 台北市: 渤海堂.
72. Arancibia, R., et al., Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res, 2013. 92(8): p. 740-5.
73. Iwanaga, H., et al., FACTORS INFLUENCING GELATION TIME OF TISSUE CONDITIONERS. Journal of Oral Rehabilitation, 1995. 22(3): p. 225-232.
74. Parker, S. and M. Braden, The effect of particle size on the gelation of tissue conditioners. Biomaterials, 2001. 22(14): p. 2039-42.
75. Murata, H., et al., Viscoelastic properties of tissue conditioners - influence of molecular weight of polymer powders and powder/liquid ratio and the clinical implications. Journal of Oral Rehabilitation, 1998. 25(8): p. 621-629.
76. Jung, T., A. Breitenbach, and T. Kissel, Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. Journal of Controlled Release, 2000. 67(2-3): p. 157-169.
77. Lee, S.C., et al., Quantitative analysis of polyvinyl alcohol on the surface of poly(D,L-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. Journal of Controlled Release, 1999. 59(2): p. 123-132.
78. Fu, X., Q. Ping, and Y. Gao, Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. Journal of Microencapsulation, 2005. 22(7): p. 705-714.
79. Mainardes, R.M. and R.C. Evangelista, PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm, 2005. 290(1-2): p. 137-44.
80. Yue, I.C., et al., A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials, 2004. 25(17): p. 3743-50.
81. Li, J., et al., In vitro drug release study of methacrylate polymer blend system: effect of polymer blend composition, drug loading and solubilizing surfactants on drug release. J Mater Sci Mater Med, 2010. 21(2): p. 583-8.
82. Bertolini, M.M., et al., Resins-based denture soft lining materials modified by chlorhexidine salt incorporation: An in vitro analysis of antifungal activity, drug release and hardness. Dent Mater, 2014.

QR CODE