簡易檢索 / 詳目顯示

研究生: 陳政緯
Cheng-Wei Chen
論文名稱: 半電池反應之交流阻抗研究鑭鈣鈷鐵氧化物陰極
Impedance Study of Half-cell Reaction on (La0.75Ca0.25)(CoxFe1-x)O3-δ Cathode
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周振嘉
Chen-Chia Chou
周更生
Kan-Sen Chou
陳貞夙
Jen-Sue Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 鈣鈦礦結構陰極鑭鉬氧化物半電池氧還原反應電化學交流阻抗圖譜固態氧化物燃料電池極化損失
外文關鍵詞: perovskite, cathode, LAMOX, half-cell, SOFC, electrochemical impedance spectroscopy, oxygen reduction reaction, polarization loss
相關次數: 點閱:306下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討(La0.75Ca0.25)(CoxFe1-x)O3-δ (x=0.1~0.9)接面於(La1.8Dy0.2)(Mo2-yWy)O9 (y=0~1)電解質的半電池反應,尋求最適當的微結構特徵及最佳的電化學表現,進而瞭解影響陰極氧還原反應極化損失的因素,實驗中利用X光繞射(XRD)、掃描式顯微鏡(SEM)分析材料結構,電化學交流阻抗圖譜術(EIS)分析半電池的電化學表現。
    (La0.75Ca0.25)(CoxFe1-x)O3-δ經過XRD分析為單一相的斜方晶鈣鈦礦結構,晶格常數a ≈ b ≠ c,由於Co離子半徑小於Fe,所以當Co含量增加,晶格常數與體積縮小,同時晶格常數a與b的差距變大。在微結構上,探討燒結溫度從800-950℃之影響,燒結溫度800℃顯示陰極與電解質的接合較差;950℃則導致孔隙減少及粒子粗化,而最佳之燒結溫度為900℃。陰極粉末煆燒溫度在1200℃與其它較低煆燒溫度相比具有較佳的結晶性,並顯示結晶性對於氧還原反應有相當的影響力。根據TG/DTA測試(La0.75Ca0.25)(Co0.8Fe0.2)O3-與(La1.8Dy0.2) (Mo1.6W0.4)O9混合粉體之結果表示無明顯相變或反應發生。然而,以EDS元素分析半電池,發現有微量的Mo從電解質擴散至陰極。
    (La0.75Ca0.25)(CoxFe1-x)O3-δ陰極於Co摻雜量為80mol%(x=0.8)、煆燒溫度1200℃、燒結溫度900℃具有最小的氧還原反應阻抗,(La0.75Ca0.25)(Co0.8Fe0.2)O3-δ / (La1.8Dy0.2)(Mo1.6W0.4)O9半電池於700℃為12 Ωcm2(交換電流密度為3.1 mAcm-2);800℃為0.8 Ωcm2(交換電流密度為30.2 mAcm-2)。以施加偏壓之交流阻抗量測顯示,在600℃與700℃的操作溫度,氧還原反應阻抗明顯降低,上升至800℃則影響不大。(La0.75Ca0.25)(Co0.8Fe0.2)O3-δ之氧還原反應極化損失隨著(La1.8Dy0.2)(Mo2-yWy)O9電解質離子導電率的下降而增加,從全對數圖顯示交換電流密度與電解質離子導電率呈線性的關係,證明電解質離子導電度也是影響氧還原反應極化損失的重要因素之ㄧ。


    We investigate the polarization loss of oxygen reduction reaction (ORR) at (La0.75Ca0.25)(CoxFe1-x)O3-δcathode which is interfaced to (La1.8Dy0.2)(Mo2-yWy)O9 electrolyte in the half cell, and search for the optimum electrochemical performance in a wide range of Co content and pore structure. The structure of ((La0.75Ca0.25)(CoxFe1-x)O3-δis studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The catalytic activity of (La0.75Ca0.25)(CoxFe1-x)O3-δ is analyzed using electrochemical impedance spectroscopy and verified by Tafel plots of current-voltage curve.
    XRD patterns of (La0.75Ca0.25)(CoxFe1-x)O3-δindicate a perovskite phase of orthorhombic cell with cell parameters a ≈ b ≠ c. All cell parameters decrease with the Co content since Co is a smaller ion compared with Fe. The difference between a and b increases with the Co content. The pore structure of cathode varies considerably in the sintering temperature range 800-950℃. Sintering at 800℃ results in a poor interface between cathode and electrolyte. Sintering at 950℃leads to a cathode of low porosity and coarsened grains. Hence the optimum sintering temperature is 900℃. TGA/DTA analysis on the powder mixture of (La0.75Ca0.25)(Co0.8Fe0.2)O3-δ and (La1.8Dy0.2)(Mo1.6W0.4)O9 shows no sign of solid state reaction or phase transformation. However, the elemental analysis using EDS indicates Mo diffusion from electrolyte to cathode after half-cell experiment. (La0.75Ca0.25)(CoxFe1-x)O3-δ powder calcined at 1200℃ is superior to the powder of same composition calcined at lower temperature. It is believed that a high calcination temperature assists in the crystallinity of (La0.75Ca0.25)(CoxFe1-x)O3-δ which is an important factor for this mixed conductor.
    The cathode of (La0.75Ca0.25)(CoxFe1-x)O3-δ which was calcined at 1200℃ and sintered at 900℃ shows a minimum ORR polarization loss at x=0.8. (La0.75Ca0.25)(CoxFe1-x)O3-δ/(La1.8Dy0.2)(Mo1.6W0.4)O9 is measured 12 Ωcm2(exchange current density 3.1 mAcm-2) at 700℃, 0.8Ωcm2(exchange current density 30.2 mAcm-2) at 800℃. The imposed dc bias reduces the polarization loss considerably, especially at 600 and 700℃. The influence of dc bias is much less at 800℃. The ion conductivity of electrolyte is also an important factor for ORR polarization loss, as evidenced in the increasing ORR loss of (La0.75Ca0.25)(Co0.8Fe0.2)O3-δ with decreasing ion conductivity of (La1.8Dy0.2)(Mo2-yWy)O9 (y=0.0-1.0). A linear relation was found between exchange current density of the cathode and ion conductivity of the electrolyte in the log-log plot.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論基礎與文獻探討 3 2.1 燃料電池簡介 3 2.2 固態氧化物燃料電池(SOFC) 7 2.2.1 固態氧化物燃料電池之簡介 7 2.2.2 固態氧化物燃料電池之材料與設計 8 2.2.3 固態氧化物燃料電池之發展近況 10 2.3 固態氧化物燃料電池之鑭鉬氧化物基電解質 13 2.3.1 鑭鉬氧化物La2Mo2O9 13 2.3.2 鑭鏑鉬鎢氧化物(LDMW)電解質 14 2.4 固態氧化物燃料電池之陰極材料 17 2.4.1 陰極材料之特性 17 2.4.2 鈣鈦礦陰極材料 18 2.5 固態氧化物燃料電池之電極極化 22 2.5.1 歐姆極化 23 2.5.2 濃度極化 24 2.5.3 活化極化 25 2.5 固態氧化物燃料電池之陰極氧還原反應機構 30 2.6.1 陰極氧還原反應路徑 31 2.6.2 陰極氧還原反應步驟 32 2.7 電化學交流阻抗圖譜(EIS) 38 2.7.1 電化學交流阻抗圖譜簡介 38 2.7.2 電化學交流阻抗圖譜之基礎理論 39 2.7.3 電化學交流阻抗圖譜之等效電路 41 第三章 實驗方法 47 3.1 實驗藥品及儀器設備 47 3.2 實驗流程 49 3.3 鑭鏑鉬鎢氧化物(LDMW)製備方法 50 3.3.1 前驅物的準備 50 3.3.2 煆燒 50 3.3.3 壓錠 51 3.3.4 燒結 51 3.4 鑭鈣鈷鐵氧化物(LCCF)製備方法 53 3.4.1 前驅物的準備 53 3.4.2 煆燒 53 3.4.2 陰極粉末膏製備 54 3.5 LCCF/LDMW半電池製作 55 3.6 材料特性分析 57 3.6.1 X光繞射(XRD) 57 3.6.2 密度量測 58 3.6.2 掃描式電子顯微鏡(SEM) 58 3.6.3 EDS元素分析 59 3.6.4 熱重及熱差分析儀之量測 59 3.7 半電池電化學反應分析 60 3.7.1 交流阻抗圖譜分析 60 3.7.2 DC極化曲線量測 60 第四章 結果與討論 61 4.1 X光繞射圖譜分析 64 4.2 陰極孔隙度估算 71 4.3 熱重與熱差分析(TG/DTA) 72 4.4 煆燒溫度之影響 73 4.4.1 XRD圖譜 73 4.4.2 顯微結構特性 74 4.4.3 交流阻抗圖譜分析 76 4.5 燒結溫度之影響 80 4.5.1 顯微結構特性 81 4.5.1 交流阻抗圖譜分析 83 4.6 摻雜不同量鈷之影響 88 4.6.1 微結構特性 89 4.6.2 交流阻抗圖譜分析 90 4.7 交換電流密度 94 4.8 DC bias之影響 96 4.9 電解質離子導電率之影響 99 4.10 Mo的擴散現象 106 第五章 結論 109 參考文獻 111 附錄A 117 附錄B 118

    1.Brian C. H. Steele, Angelika Heinzel, Nature, 414, 345 (2001).
    2.J. Larminie and A. Dicks, “Fuel Cell System Explained”, 2ed, JOHN WILEY & SONS, Inc. , England, (2000).
    3.N. Sammes, “Fuel Cell Technology”, Springer, London, (2006).
    4.Nguyen Q. Minh , Solid State Ionics, 174, 271 (2004).
    5.M. Gödickemeier, L J. Gauckler, J. Electrochem. Soc., 145,414 (1998)
    6.材料世界網 http://www.materialsnet.com.tw
    7.D. S. Tsai, M. J. Hsieh, J. C. Tseng, H. Y. Lee, J. Euro. Ceram. Soc., 25(4), 481 (2005 ).
    8.S. Georges, F. Goutenoire, O. Bohnke, M. C. Steil, S. J. Skinner, H. D. Wiemhofer, P. Lacorre, J. New Materials for Electrochemical Systems, 7, 51 (2004).
    9.S. Georges, S. J. Skinner, P. Lacorre, M. C. Steil, Dalton Trans., 3101 (2004).
    10.A. Tarancon, T. Norby, G. Dezanneau, A. Morata, F. Peiro, J. R. Morante, Electrochem. Solid-State Lett., 7, A373 (2004).
    11.C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor, J. Mater. Chem., 14, 3553 (2004).
    12.G. G. Zhang, Q. F. Fang, X. P. Wang, Z. G. Yi, Phys. Stat. Sol., 199, 329 (2003).
    13.S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Solid State Ionics, 161, 231 (2003).
    14.S. Georges, F. Goutenoire, Y. Laligant, Ph. Lacorre, J. Mater. Chem. 13, 421, 2317 (2003).
    15.Z. G. Yi, Q. F. Fang, X. P. Wang, G. G. Zhang, Solid State Ionics, 160, 117 (2003).
    16.X. P. Wang, Q. F. Fang, Phys. Rev. B, 65, 064304-1(2002).
    17.X. P. Wang, Q. F. Fang, Z. S. Li, G. G. Zhang, Z. G. Yi, Appl. Phys. Lett., 81, 3434 (2002).
    18.X. P. Wang, Q. F. Fang, Solid State Ionics, 146, 185 (2002).
    19.F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, and P. Lacorre, J. Mater. Chem., 11, 119 (2001).
    20.X. P. Wang, Q. F. Fang, J. Phys. Condens. Matter, 13, 1641 (2001).
    21.P. Lacorre, Solid State Ionics, 2, 755 (2000).
    22.P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
    23.F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater., 12, 2575 (2000).
    24.F. Goutenoire, E. Suard, R. Retoux and P. Lacorre, J. Solid State Chem., 142, 228 (1999).
    25.F. Shi, J. Meng and Y. Ren, Solid State Commun., 95, 745 (1995).
    26.A. Manthiram and J. Gopalakrishnan, J. Less-Common Met., 68, 167 (1979).
    27.P. Lacorre and R. Retoux, J. Solid State Chem., 132, 443 (1997).
    28.T.Y. Jin, M.V. Madhava Rao, C. L. Cheng, D. S. Tsai , M. H. Hung, Solid State Ionics, 178, 367 (2007).
    29.S.P. Jiang, Solid State Ionics, 146, 1 (2002).
    30.U.S. Department of Energy, “Fuel Cell Handbook”, 7th, EG&G Technical Services, Inc. (2004)
    31.I. Yasuda, K. Ogasawaraa, M. Hishinuma, T. Kawada, M. Dokiyab, Solid State Ionics, 86-88, 1197 (1996)
    32.E. Siebert, A. Hammouche, M. Kleitz, Electrochimica Acta., 40(11), 1741 (1995).
    33.E.P. Murray, T. Tsai, S.A. Barnett, Solid State Ionics, 110, 235(2007).
    34.M. J. Jørgensenz, M. Mogensen, Journal of The Electrochemical Society, 148(5) A433 (2001).
    35.Anne C. Co, Shen Jiang Xia, Viola I. Birss, Journal of The Electrochemical Society, 152(3) A570 (2005).
    36.G.Ch. Kostogloudis, Ch. FtikosSolid, Solid State Ionics, 126, 143 (1999).
    37.Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Solid State Ionics, 48, 207 (1991).
    38.S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, B.C.H. Steele, Sohd State lomcs, 53-56, 597 (1992).
    39.H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics, 117, 277 (1999).
    40.Z. Shao, S.M. Haile, Nature, 431, 170 (2004)
    41.S.C. Singhal, K. Kendall, “High Temperature Solid Oxide Fuel Cells”, Elsevier (2003).
    42.J. O’M. Bockris and A. K. N. Reddy, “Modern Electrochemistry”, Chap. 8 and 9, Plenum Publishing Corporation, New York (1977).
    43.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”,Chap. 3, John Wiley & Sons, Inc., New York (2001).
    44.Ivers-Tiffée, A.Weber, H. Schichlein, “Handbook Fuel Cell”, Vol.3, Chap.9, Wiley (2003).
    45.H. Uchida, M. Yoshida, M. Watanabe, J. Phys. Chem., 99, 3282 (1995).
    46.M. Watanabe, H. Uchida, M. Yoshida, J. Electrochem. Soc., 144(5), 1739 (1997).
    47.H. Uchida, M. Yoshida, M. Watanabe, J. Electrochem. Soc., 146(1), 1 (1999).
    48.J. Fleig, Annu. Rev. Mater. Res., 33, 361-382 (2003).
    49.A. Mitterdorfer, L. J. Gauckler, Solid Stste Ionics, 117, 203 (1999).
    50.O. J. Velle, T. Noby, P. Kofstad, Solid Stste Ionics, 47, 161 (1991).
    51.S. B. Adler, J. A. Lane, B. C. H. Steele, J. Electrochem. Soc., 143, 3554 (1996)
    52.V. Brichzin, J. Fleig, H. U. Habermeier, J.Maier, Electrochem. Solid State Lett., 3, 403 (2000)
    53.D. Herbstritt, A. Weber, E. Ivers-Tiffée, in ‘Proc. 6th Intl. Symp. Solid Oxide Fuel Cells’, S. C. Singhal (Ed), Pennington, NJ, p.973 (1999)
    54.E. Ivers-Tiffée, A. Weber, D. Herbstritt, J. Eur. Ceram. Soc., 21, 1805 (2001).
    55.J. van Herle, A. J. McEvoy, K. Ravindranathan-Thampi, Electrochim. Acta, 41, 1447 (1996).
    56.A. Hammouche, E. Sieber, M. Kleitz, J. Electrochem. Soc., 138, 1212 (1991)
    57.F. P. F. Van Berkel, F. H. Van Heuveln, J. P. P. Huijsmans. Solid State Ionics., 72, 240 (1994)
    58.M. J. L. Oestergard, M. Mogensen, Electrochimica Acta, 38, 2015 (1993)
    59.J. Mizusaki, H. Tagawa, T. Saito, H. Naria, in ‘Proc. 13th Intl. Symp. Materials Science’, F. W. Poulsen (Ed), Risoc, p.343 (1993)
    60.T. Ioroi, T. Hara, Y. Uchimoto. Z. Ogumi, Z. Takchara, J. Electrochem. Soc., 145, 1999 (1998)
    61.E. Barsoukov, J. R. Macdonald, “Impedance Spectroscopy, Theory Experiment and Applications”, John Wiley & Sons, Inc., New York (2005).
    62.C.H. Hsu, F. Mansfeld, Corrosion, 57(9), 747 (2001)
    63.洪明豪 “鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質” 碩士學位論文, 國立台灣科技大學(2006).
    64.M.H. Hung, M.V. Madhava Rao, D.S. Tsai, Materials Chemistry and Physics, 101, 297 (2007).
    65.N.A. Merino, B.P. Barbero, C. Cellier, J.A. Gamboa, L.E. Cadús, Catalysis Letters, 113(3-4), 130 (2007)
    66.N.A. Merino, B.P. Barbero, P. Grange, L.E. Cadús, Journal of Catalysis, 231, 232 (2005).
    67.N.A. Merino, B.P. Barbero, P. Ruizb, L.E. Cadús, Journal of Catalysis, 240, 245 (2006).
    68.L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, Solid State Ionics, 158, 55 (2003).
    69.J. W. Stevenson, T.R. Armstrong, R. D. Carneim, L.P. Pederson, W. J. Weber, J. Electrochem. Soc., 143(9), 2722 (1996)
    70.R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miurac, J. Electrochem. Soc., 146(6), 2006 (1999)
    71.K. Murata, T. Fukui, H. Abe, M. Naito, K. Nogi, Journal of Power Sources, 145, 257 (2005).
    72.S. H. Chan, X. J. Chen, K. A. Khor, J. Electrochem. Soc., 151(1), A164 (20040.
    73.F. Deganello, V. Esposito, M. Miyayama, E. Traversab, J. Electrochem. Soc., 154(2), A89 (2007).
    74.V.V. Kharton, F.M. Figueiredo, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, A.A. Yaremchenko, I.A. Bashmakov, F.M.B. Marques, Journalof the European Ceramic Society, 21, 2301 (2001).
    75.K. Kammer, Solid State Ionics, 177, 1047 (2006).
    76.J.M. Ralph, Ce´cile Rossignol, R. Kumar, J. Electrochem. Soc., 150(11), A1518 (2003).
    77.L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics, 76,259 ( 1995)
    78.Frank J. Berry, J. Ramón Gancedo, José F. Marco, Xiaolin Rena, Journal of Solid State Chemistry, 177, 2101 (2004).
    79.Hee Y. Lee, Woo S. Cho, and Seung M. Oh, H.D. Wiemhöfer, W. Göpel, J. Electrochem. Soc., 142(8), 2659 (1995)

    QR CODE