簡易檢索 / 詳目顯示

研究生: 陳秉睿
Pin-Jui Chen
論文名稱: 以三維數值分析初步探討潛盾隧道在不同剪力波速地層中之受震行為
Preliminary studies on the seismic behavior of tunnel in soil layer with different shear wave velocity using three-dimensional numerical analysis
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳希舜
Shi-Shuenn Chen
陳堯中
Yao-Chung Chen
陳韋志
Wei-Chih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 202
中文關鍵詞: 數值分析潛盾隧道剪力波速勁度比受震反應
外文關鍵詞: Numerical Analysis, Shield tunnel, Shear wave velocity, Stiffness ratio, Seismic response
相關次數: 點閱:212下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層剪力波速是衡量地盤特性之指標,實務上沿著隧道行進方向,可能發生地層剪力波速急遽變化。由文獻得知,勁度均勻之潛盾隧道前後段進入不同剪力波速地層,會發生受震反應不同之情形,使單一地震施予隧道不同強度作用力並造成負面影響。本研究將潛盾機開挖過程納入模擬,並考量土壤與結構互制作用,以地層與隧道勁度比定義不同剪力波速地層中隧道受震之彎矩變化,並延伸分析潛盾隧道對不同剪力波速地層之影響特徵,以初步探討潛盾隧道在不同剪力波速地層中之受震行為。
    本研究應用三維有限差分數值軟體FLAC3D靜態及動態完全非線性模擬,先模擬潛盾工法施工輪進建立隧道模型,再將單一地盤假定成比例變化之剪力波速,並個別施加兩種不同大小且垂直隧道軸向之水平地震力,再建立無隧道模型與隧道模型相比較。
    分析結果顯示:(1) 不同剪力波速地層會改變潛盾隧道之存在對土層及地表建物的影響程度,其中可分為剪力波速直接影響與峰值加速度主導的間接影響。(2) 勁度比對潛盾隧道受地震力作用的影響程度極大,在實務上設計隧道襯砌時,應避免全以提升勁度的方式作為耐震設計。
    關鍵字:數值分析、潛盾隧道、剪力波速、勁度比、受震反應


    Shear wave velocity is an index to measure the hardness of the ground. In practice, along the longitudinal direction of shallow tunnel, sharp transitions in shear wave velocity of ground may occur. This study considers the interaction of soil and structure, and the stiffness ratio of ground and tunnel is used to define the influence of tunnel moment under earthquake. Preliminary analysis of the impact of shield tunnels on ground with different shear wave velocity, and the seismic behavior of shield tunnel in ground with different shear wave velocity.
    In this study, the 3D FDM software FLAC3D was used for static and dynamic fully nonlinear simulations. Simulate excavation first, then set different shear wave velocity at the ground, and input two shear waves with different peak accelerations for comparison.
    According to the results of numerical analysis, the following conclusions can be obtained: (1) Different shear wave velocity will affect the impact of shield tunnels on soil and surface structures, which can be divided into direct effects and indirect effects dominated by peak acceleration. (2) The stiffness ratio has a great influence on the seismic force of the shield tunnel. When designing the tunnel lining in practice, the method of increasing the stiffness of the lining can’t be the only method of seismic design. Keyword: Numerical Analysis, Shield tunnel, Shear wave velocity, Stiffness ratio, Seismic response.

    摘要 III Abstract IV 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與方法 2 1.3 研究內容與架構 4 第二章 文獻回顧 6 2.1 潛盾工法概述 6 2.1.1 壓力平衡式潛盾機 7 2.1.2 潛盾隧道環片類型與載重型式 9 2.1.3 輪進開挖進程 10 2.2 剪力波速之影響 12 2.2.1 剪力波速對隧道受震影響之研究 12 2.3 隧道受震分析 15 2.3.1 土壤-結構互制法 15 2.3.2 數值分析法 19 2.3.3 隧道受震數值分析與理論解之研究比較與延伸 22 2.4 機械開挖擾動地質之行為與影響 26 2.4.1 開挖擾動之研究回顧 26 2.4.2 以輪進步驟分類開挖擾動 28 2.4.2.1 輪進步驟-前:盾首之土體擾動影響因素 28 2.4.2.2 輪進步驟-中:盾殼之土體擾動影響因素 31 2.4.2.3 輪進步驟-後:盾尾之土體擾動影響因素 31 2.5 土壤動態性質與模擬 32 2.5.1 土壤動態性質 33 2.5.2 等效線性法 34 2.5.3 完全非線性法 34 2.5.4 等效線性法與完全非線性法之比較回顧 36 2.5.5 遲滯阻尼與雷利阻尼之比較回顧 37 第三章 數值分析方法 39 3.1 FLAC3D理論與應用 39 3.1.1 FLAC3D運算方法 40 3.1.2 FLAC3D運算流程與理論 41 3.1.3 FLAC3D本構模型與應用 44 3.1.4 FLAC3D操作介面 46 3.1.5 FLAC3D符號法則 47 3.1.6 FLAC3D靜態應用步驟 49 3.1.7 FLAC3D動態注意事項 50 3.1.8 FLAC3D動態應用步驟 58 3.2 ProShake理論與應用 59 3.2.1 ProShake運算理論 59 3.2.2 ProShake操作介面 61 3.2.3 ProShake應用步驟 64 3.3 Dynamic Input Wizard簡介與應用 64 第四章 潛盾隧道靜態數值模擬 67 4.1 分析工作規劃 67 4.2 三維分析網格建立 68 4.3 材料參數與假設 70 4.3.1 土體假設及參數 70 4.3.2 潛盾構造假設及參數 71 4.4 邊界條件與初始應力 74 4.5 施工流程 76 4.6 靜態分析結果與討論 77 4.6.1 靜態開挖塑性區分布 77 4.6.2 軸向/橫向地表垂直變位 78 4.6.3 隧道環片及周圍土體變位 82 4.6.4 土體主應力值 86 4.6.5 環片受力情形 87 第五章 潛盾隧道動態數值模擬 89 5.1 動態土壤參數與假設 89 5.2 邊界與基礎條件 90 5.3 地震波與處理 91 5.4 網格範圍與尺寸 93 5.5 阻尼參數 97 5.6 動態輸入驗證 100 5.7 動態分析結果與討論 105 5.7.1 隧道存在與否之影響 106 5.7.1.1 峰值加速度之變化 106 5.7.1.2 頻譜之變化 110 5.7.1.3 反應譜之變化 114 5.7.2 受震地層塑性區分布情形 118 5.7.3 隧道受震內力變化與探討 123 5.7.3.1 隧道受震軸力變化歷時 123 5.7.3.2 受震引致軸力變化 127 5.7.3.3 隧道受震彎矩變化歷時 139 5.7.3.4 受震引致彎矩變化 143 5.7.3.5 頂拱加速度變化對環片受震行為之影響 155 5.7.3.6 土壤與隧道勁度比對隧道受震之影響 156 5.7.3.7 環片受震數值解與理論解比較 159 第六章 結論與建議 163 6.1 結論 163 6.2 建議 165 參考文獻 167 附錄A 數值分析程式指令 172 附錄B 理論解計算過程 186 附錄C 委員意見回覆表 195 符號對照表 198

    [1] Pan, H. K., and Wang, G.B., and Wang, Y.X.. “Preliminary Analysis of the Influence of Longitudinal Non-Uniform Distribution of Soil Parameters on the Seismic Response of a Shield Tunnel.” China Earthquake Engineering Journal, vol. 37, no. 3, Sept. 2015.
    [2] Yu, Haitao, and Zhang, Zhengwei, and Chen, Juntao, and Bobet, Antonio, and Zhao, Mi, and Yuah, Yong. “Analytical Solution for Longitudinal Seismic Response of Tunnel Liners with Sharp Stiffness Transition.” Tunnelling and Underground Space Technology, vol. 77, July 2018, pp. 103–114.
    [3] Wang, J.N.. Seismic Design of Tunnel-A simple State-of-the-Art Design Approach. Parsons Brinckerhoff Quade & Douglas Inc., 1993.
    [4] Wang, J.N., and Munfakh, G.A. “Seismic Design of Tunnels.” Transactions on the Built Environment, vol. 57, 2001, pp. 589–598.
    [5] Hashash, Youssef M.A., and Hook, Jeffrey J., and Schmidt, Birger, and Yao, John I-Chiang. “Seismic Design and Analysis of Underground Structures.” Tunnelling and Underground Space Technology, vol. 16, no. 4, Oct. 2001, pp. 247–293.
    [6] Peck, R.B., and Hendron, A.J., and Mohraz, B.. “State of the Art of Soft-Ground Tunneling.” International Proceedings of the North American Rapid Excavation and Tunneling Conference, vol. 1, 1972, pp. 259–286.
    [7] Schwartz, C.W., and Einstein, H.H.. Improved Design of Tunnel Supports: Volume 1 - Simplified Analysis for Ground-Structure Interaction in Tunneling. DOT-TSC-UMTA-80-27-I, United States. Urban Mass Transportation Administration, 1980.
    [8] Sliteen, I., and Mroueh, H., and Sadek, M.. “Three-Dimensional Modeling of the Behavior of Shallow Tunnel under Seismic Loading.” 20eme Congres Francais de Mechanique (CFM2011), 2011.
    [9] Do, N., and Dias, D., and Oreste, P., and Maigre, I.. “Behaviour of Segmental Tunnel Linings under Seismic Loads Studied with the Hyperstatic Reaction Method.” Soil Dynamics and Earthquake Engineering, vol. 79, 2015, pp. 108–117.
    [10] Shahrour, I., and Khoshnoudian, F., and Sadek, M., and Mroueh, H.. “Elastoplastic Analysis of the Seismic Response of Tunnels in Soft Soils.” Tunnelling and Underground Space Technology, vol. 25, no. 4, July 2010, pp. 478–482.
    [11] Martino, J.B., and Chandler, N.A.. “Excavation-Induced Damage Studies at the Underground Research Laboratory.” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 8 SPEC.ISS., 2004, pp. 1413–1426.
    [12] Sato, T., and Kikuchi, T., and Sugihara, K.. “In-Situ Experiments on an Excavation Disturbed Zone Induced by Mechanical Excavation in Neogene Sedimentary Rock at Tono Mine, Central Japan.” Engineering Geology, vol. 56, no. 1–2, Apr. 2000, pp. 97–108.
    [13] Cai, M., and Kaiser, P.K.. “Assessment of Excavation Damaged Zone Using a Micromechanics Model.” Tunnelling and Underground Space Technology, vol. 20, no. 4, July 2005, pp. 301–310.
    [14] Babendererde, T., and Elsner, P.. “Keeping the Face Support in Soft Ground TBM Tunnelling.” Geotechnical Aspects of Underground Construction in Soft Ground - Proceedings of the 8th Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, TC204 ISSMGE - IS-SEOUL 2014, 2014, pp. 531–537.
    [15] Salvatore, M., and Lillis, A. de. “Predicted and Observed Settlements Induced by the Mechanized Tunnel Excavation of Metro Line C near S. Giovanni Station in Rome.” Tunnelling and Underground Space Technology, vol. 86, Apr. 2019, pp. 236–246.
    [16] 胡庭豪,捷運工程技術服務之回顧與展望,中興工程季刊,2010,第107期,p. 303-327。
    [17] Ghaboussi, J., and Gioda, G.. “On the Time-Dependent Effects in Advancing Tunnels.” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 1, 1977, pp. 249–269.
    [18] Anagnostou, G., and Linard, C., and Ramoni, M.. “About the Advancing Face – Spatial Effects in Tunnel Engineering.” Rocksoil’s 30th Anniversary Conference / The Evolution of Design and Construction Approaches in the Field of Underground Projects, Oct. 2009.
    [19] Ramoni, M., and Anagnostou, G.. “On the Feasibility of TBM Drives in Squeezing Ground.” Tunnelling and Underground Space Technology, vol. 21, no. 3–4, May 2006, p. 262.
    [20] Ramoni, M., and Anagnostou, G.. “The Effect of Advance Rate on Shield Loading in Squeezing Ground.” Proceedings of the 33rd ITA-AITES World Tunnel Congress - Underground Space - The 4th Dimension of Metropolises, vol. 1, May 2007, pp. 673–677.
    [21] Vonk, M.. Grouting the tail void: Analysis of the tail void grouting process at the North/South line. M.S., Delft University of Technology, Delft, 2020.
    [22] Wang, Zhenhua, and Ma, Zongyuan, and Dang, Faning. “Seismic Response Analysis of Soil Layer Using Equivalent Linear or Nonlinear Method.” Journal of Xi an University of Technology, vol. 29, no. 4, 2013, pp. 421–427.
    [23] Yang, Yusheng, and Yu, Haitao, and Yuan, Yong. “Comparative Study on Several Soil Ground Simulation Schemes in Seismic Analysis of Underground Structures.” Journal of Disaster Prevention and Mitigation Engineering, vol. 39, no. 2, Apr. 2019, pp. 244–257.
    [24] FLAC3D Fast Lagrangian Analysis of Continua in 3Dimensions. 2.1, Itasca Consulting Group, Inc., 2002.
    [25] Proshake Ground Response Analysis Program User’s Manual. 2.0, EduPro Civil Systems, Inc., 2017.
    [26] Xiong, L. X., and Li, T.B., and Liu, Yong. “Numerical Simulation of Seismic Response at the Entrance of the Unsymmetrical Loading Tunnel.” Journal of Geomechanics, vol. 13, no. 3, Sept. 2007.
    [27] 陳伯興,余旭洲,潛盾隧道受鄰近工區近接施工影響評估及分析,捷運技術半年刊,2014,第48期,p. 213-234.。
    [28] Hasanpour, R., and Rostami, J., and Unver, B.. “3D Finite Difference Model for Simulation of Double Shield TBM Tunneling in Squeezing Grounds.” Tunnelling and Underground Space Technology, vol. 40, Feb. 2014, pp. 109–126.
    [29] Liu, Yaoru, and Hou, Shaokang, and Li, Chaoyi, and Zhou, Haowen, and Jin, Feng, and Qin, Pengxiang, and Yang, Qiang. “Study on Support Time in Double-Shield TBM Tunnel Based on Self-Compacting Concrete Backfilling Material.” Tunnelling and Underground Space Technology, vol. 96, 2020.
    [30] 臺北市政府捷運工程局,土木工程設計準則 (2019 年1 月版),2019。
    [31] 熊彬成,曾世雄,軟弱土壤中潛盾隧道開挖引致之土體及鄰房反應,行政院國家科學委員會專題研究計畫成果報告,2005。
    [32] Vucetic, M., and Dobry, R.. “Effects of Soil Plasticity on Cyclic Response.” Journal of Geotechnical Engineering, vol. 117, no. 1, 1991, pp. 89–107.
    [33] Xu, R., and Fatahi, B. “Three Dimensional Numerical Analysis of Seismic Soil-Structure Interaction Considering Soil Plasticity.” 6th International Co Nference on Earthquake Geotechnical Engineering, Nov. 2015, pp. 1–4.
    [34] Dobry, R., et al. “Simplified Procedures for Estimating the Fundamental Period of a Soil Profile.” Bulletin of the Seismological Society of America, vol. 66, no. 4,August 1976, pp. 1293–1321.
    [35] 中華民國內政部營建署,建築物耐震設計規範及解說(94版),2011。
    [36] 翁孟嘉,蔡明欣,冀樹勇,陳錦清,地震時潛盾隧道與既有建築物之互制行為,第11屆大地工程學術研究討論會,2005。
    [37] Mazaheri, A., and Seifabad, C. M., and Mahdavi, S., and Dehghani, B.. “Seismic Sensitivity Analysis of Rigidity and Thickness of Tunnel Lining by Using Ground_Structure Interaction Method Case Study: Roudbar Lorestan Dam.” Geotechnical and Geological Engineering, vol. 39, 2, 2021, pp. 1557–1582.
    [38] 陳正勳,岩石隧道受震行為及襯砌破壞機制之研究,博士,土木工程      
     學研究所,國立台灣大學,2010。

    QR CODE