簡易檢索 / 詳目顯示

研究生: 呂永玄
Yong-Syuan Lu
論文名稱: 基於相關雜訊通道之 SC-CNN 極化解碼器
SC-CNN Polar Decoder under Correlated Noise Channels
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 王瑞堂
Jui-Tang Wang
林敬舜
Ching-Shun Lin
劉建成
Jai-Cheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 極化碼卷積神經網路連續消除解碼相加關聯性的高斯雜訊解碼器硬體實現
外文關鍵詞: Successive Cancellation, Additive Correlated Gaussian Noise, Successive Cancellation- convolutional neural network, Very Large Scale Integration
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出基於相關雜訊通道的SC-CNN極化碼(Polar Code)解碼器之超大型積體電路(VLSI)設計與實作,以SC-CNN演算法為基礎,改良成可適應不匹配相關雜訊通道的硬體架構,降低因CNN權重參數與相關雜訊通道不匹配時造成的效能下降,並加入CRC校驗機制在解碼正確時提早停止運算,減少平均電路解碼時間。
    本論文使用Python和Matlab作為演算法的軟體模擬平台,並使用電路和成軟體做電路效能評估。
    論文內容包含極化碼介紹、卷積神經網路介紹、用於相關雜訊之CNN解碼介紹、SC-CNN解碼器改良與架構設計、硬體架構設計與比較,最後總結論文成果與描述未來設計方向。


    This paper proposes a Very Large Scale Integration (VLSI) design and implementation of a Successive Cancellation Convolutional Neural Network (SC-CNN) polar code decoder for application in correlated noisy channels. The decoder is based on the SC-CNN algorithm and is modified to adapt to mismatched correlated noisy channels, reducing performance degradation caused by mismatch between CNN weight parameters and correlated noisy channels. Additionally, a CRC verification mechanism is incorporated to stop computation early when decoding is correct, reducing the average circuit decoding time.
    Python and Matlab are used as the software simulation platforms for the algorithm, while circuit and software are utilized to estimate the circuit performance.
    The contents of the paper include an introduction to polar codes, an introduction to Convolutional Neural Networks (CNN), an introduction to CNN decoding for correlated noisy channels, the improvement and architecture design of the SC-CNN decoder, hardware architecture design and comparison. Finally, the paper concludes with a summary of achievements and outlines future design directions.

    圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 3 第二章 極化碼 4 2.1 極化編碼介紹 4 2.2通道極化 5 2.2.1 通道組合 5 2.2.2 通道分裂 7 2.2.3 通道極化判定 8 2.4 極化碼編碼介紹 10 2.5 連續消除解碼 12 第三章 卷積神經網路 15 3.1 神經網路 15 3.2 卷積神經網路 17 3.2.1 卷積層 18 3.2.2 激勵函數 19 第四章 用於相關雜訊之CNN解碼器 21 4.1 迭代BP-CNN 21 4.2 CNN-SC解碼器 24 4.3 基於雜訊估計的CNN設計 25 4.4 CNN訓練模型 26 4.4.1 損失函數 27 4.4.2 生成訓練資料 28 4.5 解碼器演算法模擬驗證 28 第五章 SC-CNN解碼器改良與架構設計 31 5.1 SC-CNN解碼器設計 31 5.2 SC-CNN解碼器改良 33 5.2.1 不匹配模型的效能損失 33 5.2.2 SC-CNN解碼器改良架構 34 5.2.3 改良SC-CNN驗證流程 35 5.2.4 模擬結果 37 第六章 改良SC-CNN解碼器硬體架構與比較 40 6.1 電路方塊圖 41 6.1.1 Main Controller 41 6.1.2 SC decoder 42 6.1.3 循環冗餘校驗 44 6.1.3 資料轉換單元 45 6.1.3 卷積神經網路 46 6.2 文獻比較 50 6.3 晶片設計 52 6.3.1 晶片設計流程 52 6.3.2 晶片佈局與分析 54 第七章 結論與未來展望 56 參考文獻 57 附錄一 中英名稱對照表 61

    [1] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes," 2008 IEEE International Symposium on Information Theory, 2008, pp. 1173-1177, doi: 10.1109/ISIT.2008.4595172.
    [2] L. Di Bert, P. Caldera, D. Schwingshackl and A. M. Tonello, "On noise modeling for power line communications," 2011 IEEE International Symposium on Power Line Communications and Its Applications, Udine, Italy, 2011, pp. 283-288, doi: 10.1109/ISPLC.2011.5764408.
    [3] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998, doi: 10.1109/4.658619.
    [4] T. Souvignier, J. K. Wolf and A. Dati, "Turbo decoding for partial response channels with colored noise," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2322-2324, Sept. 1999, doi: 10.1109/20.800813.
    [5] F. Liang, C. Shen and F. Wu, "An Iterative BP-CNN Architecture for Channel Decoding," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 144-159, Feb. 2018, doi: 10.1109/JSTSP.2018.2794062.
    [6] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009, doi: 10.1109/TIT.2009.2021379.
    [7] R. Mori and T. Tanaka, "Performance of Polar Codes with the Construction using Density Evolution," in IEEE Communications Letters, vol. 13, no. 7, pp. 519-521, July 2009, doi: 10.1109/LCOMM.2009.090428.
    [8] P. Trifonov, "Efficient Design and Decoding of Polar Codes," in IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012, doi: 10.1109/TCOMM.2012.081512.110872.
    [9] J. Dai, K. Niu, Z. Si, C. Dong and J. Lin, "Does Gaussian Approximation Work Well for the Long-Length Polar Code Construction?" in IEEE Access, vol. 5, pp. 7950-7963, 2017, doi: 10.1109/ACCESS.2017.2692241.
    [10] J. Guo, M. Qin, A. Guillén i Fàbregas and P. H. Siegel, "Enhanced belief propagation decoding of polar codes through concatenation," 2014 IEEE International Symposium on Information Theory, 2014, pp. 2987-2991, doi: 10.1109/ISIT.2014.6875382.
    [11] A. A. Hasan and I. D. Marsland, "SC of polar codes based normalized MS algorithm," 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 2017, pp. 111-116, doi: 10.1109/IEMCON.2017.8117164.
    [12] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
    [13] "18 The Perceptron: A Probabilistic Model for Information Storage and Organization (1958)," in Ideas That Created the Future: Classic Papers of Computer Science , MIT Press, 2020, pp.183-190.
    [14] V. Jain and S. Seung, "Natural image denoising with convolutional networks", Proc. Adv. Neural Inf. Process. Syst., pp. 769-776, 2009.
    [15] X. Glorot, A Bordes, and Y. Bengio, "Deep sparse rectifier neural networks, "in
    Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp.315-323.
    [16] S. Gold and A. Rangarajan. Softmax to softassign: neural network algorithms for combinatorial optimization. J. Artif. Neural Netw., 2(4):381-399, 1995. 2, 4
    [17] R. Gallager, "Low-density parity-check codes," in IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21-28, January 1962, doi: 10.1109/TIT.1962.1057683.
    [18] J. . -D. Wang and H. Y. Chung, "Trellis coded communication systems-colored noise and the swapping technique," in IEEE Transactions on Communications, vol. 38, no. 9, pp. 1549-1556, Sept. 1990, doi: 10.1109/26.61396.
    [19] S. S. Tehrani, B. F. Cockburn and S. Bates, "On the Effects of Colored Noise on the Performance of LDPC Codes," 2006 IEEE Workshop on Signal Processing Systems Design and Implementation, Banff, AB, Canada, 2006, pp. 226-231, doi: 10.1109/SIPS.2006.352586.
    [20] W. Rao, Z. Liu, L. Huang, J. Sun and L. Dai, "CNN-SC Decoder for Polar Codes under Correlated Noise Channels," 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020, pp. 748-751, doi: 10.1109/ICEICT51264.2020.9334237.
    [21] C. Dong, C. C. Loy, K. He and X. Tang, "Image Super-Resolution Using Deep Convolutional Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 1 Feb. 2016, doi: 10.1109/TPAMI.2015.2439281.
    [22] T. Thadewald and H. Büning, "Jarque–Bera test and its competitors for testing normality: A power comparison", J. Appl. Statist., vol. 34, no. 1, pp. 87-105, 2007.
    [23] M. Helmling and S. Scholl, "Database of channel codes and ML simulation results", 2016, [online] Available: www.uni-kl.de/channel-codes.
    [24] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks", Proc. Int. Conf. Artif. Intell. Statist., vol. 9, pp. 249-256, 2010.
    [25] D. Kingma and J. Ba, "Adam: A method for stochastic optimization", Proc. Int. Conf. Learn. Represen., 2015
    [26] B. Yuan and K. K. Parhi, "Low-Latency Successive-Cancellation Polar Decoder Architectures Using 2-Bit Decoding," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, April 2014, doi: 10.1109/TCSI.2013.2283779.
    [27] A. S. Panda and G. L. Kumar, "Comparison of serial data-input CRC and parallel data-input CRC design for CRC-8 ATM HEC employing MLFSR," 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 2014, pp. 1-4, doi: 10.1109/ECS.2014.6892739.
    [28] Y. Chen, Z. W. Xia, L. Y. Tang, G. C. Wan and M. S. Tong, "An Improved Successive-Cancellation Decoding Algorithm for Polar Code Based on FPGA," 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 2018, pp. 756-759, doi: 10.23919/PIERS.2018.8597997.
    [29] Y. Cao, X. Wei, T. Qiao and H. Chen, "FPGA-based accelerator for convolution operations," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019, pp. 1-5, doi: 10.1109/ICSIDP47821.2019.9172934.

    無法下載圖示 全文公開日期 2033/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2043/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE