簡易檢索 / 詳目顯示

研究生: 高健斌
Chien-Pin Kao
論文名稱: 阻燃加工後之鋼木混合構件及實尺寸樑的防火性能研究
Experimental assessment of flame retardant potential and Fire resistance efficiency of full-scaled Timber-Steel Composite(TSC) beam
指導教授: 蔡孟廷
Meng-Ting Tsai
口試委員: 林慶元
Ching-Yuan Lin
莊英吉
Ying-Ji Chuang
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 鋼木混合構造阻燃加工防火性能實尺寸樑炭化深度
外文關鍵詞: Timber - Steel composite, fire retardent processing, fire resistance efficiency, full-scaled beam, char depth
相關次數: 點閱:209下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,鋼木混合構件(Timber–Steel Composites, TSC),在國外已有許多研究,它不僅能提供美觀,亦是一種環保永續的結構材料,為眾人所期待的新型式構造物。即使如此,在防火性能上仍然存在著疑慮。目前,我國內政部建研所僅針對一般集成材製定「木構造防火設計施工參考手冊」之防火設計參考,由於TSC係屬組裝型構材,因此,TSC如運用建研所提供之防火設計方法,難以確保實際使用上的安全性。

本研究延續了「鋼木組合梁之彈塑性靜曲行為及防火機制研究」的研究,參考ISO 834-1的升溫曲線進行一小時防火試驗。在第一項試驗中,試驗因子均與文獻設定相符,為使TSC構件的防火性能可有效提升,在集成材中添加阻燃藥劑進行測試,並進行有、無添加阻燃藥劑之試體的防火性能比較。由於國內目前尚未有TSC實尺寸的相關防火性能研究,因此得到第一項試驗結果後,進行第二項TSC實尺寸樑的防火試驗。藉試驗結果得知,阻燃加工確實能提升TSC的防火性能,但預留的炭化深度不足,組裝接合縫處有明顯延燒的情形,使TSC構件依然呈現不安全狀態,此外,由於實尺寸樑預留的炭化深度較深,在防火性能上表現較出色,但需特別注意接合縫隙處依然有延燒的情形,此結果顯示,TSC的弱點在接合處的縫隙,需特別留意。本研究之成果,建立了TSC之防火相關數據,提供設計人員運用不同材種的TSC,在防火設計上有可信度的參考。


In recent years, Timber - Steel composite materials (TSC) have been extensively studied abroad. Not only it provides a nice appearance, but it is also an environmentally friendly and sustainable structural material. It is the new structure that everyone is looking forward to. There are still concerns about fire performance. At present, Architecture and Building Research Institute of ministry of the interior Taiwan has only formulated the「Wooden Structure Fire Resistance Design Reference Manual for glue-laminated timber」. However, TSC series is derived from assembly materials. It is difficult to estimate the safety level of TSC regarding the fire resistance design provided by Architecture and Building Research Institute in actual.

This research continues「Flexural Behavior under Elastic and Plastic state and Fire Resistance Mechanism of Timber–Steel composite Beam.」refer to ISO 834-1 for fire curve to conduct a one-hour fire protection test. Firstly, the test factors are consistent with the setting in the literature. In order to effectively improve the fire resistance of TSC components, flame retardants are added to the glue-laminated thenfire resistance performance ared compared with the samples which are non-flame retardant. After the first test result is obtained, the second fire resistance test of TSC full-size beams is carried out. This step contributes a clearer scenery since there is no relevant fire resistance performance research of TSC full-size beams in Taiwan.

According to the test results, flame-retardant processing can indeed improve the fire resistance of TSC, but the reserved char depth is insufficient, the assembly joint shows obvious flame spread so that the TSC components are still in an unsafe condition. Besides, the reserved char depth of the full-size beam is relatively deep. The fire performance is excellent, but it is important to pay special attention to the fact that there is still flame spread at the joint gap. The weakness of TSC lies in the joint gap, which requires special attention. The results of this research have established TSC fire-related data, providing designers with a credible reference for TSC fire protection design.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 3 1.3.1 文獻參考 3 1.3.2 試驗方法 3 1.3.3 比較分析方法 3 1.4 研究流程 5 第2章 文獻回顧 6 2.1 木材燃燒特性 6 2.1.1 木材高溫特性 6 2.1.2 炭化層 7 2.2 集成材 10 2.2.1 集成材定義 10 2.2.2 集成材之防火性能 11 2.2.3 國內集成材之防火設計 13 2.2.4 國外集成材之防火設計 14 2.3 鋼木混合構造(TSC) 18 2.3.1 鋼木混合構造簡介 18 2.3.2 鋼材受火害之行為 21 2.3.3 鋼木混合構造之防火性能 23 第3章 試驗計畫 27 3.1 前言 27 3.2 試驗流程圖 28 3.3 試驗方法 29 3.3.1 高溫爐加熱溫度設定 29 3.3.2 TSC預留炭化深度 30 3.3.3 TSC構件之集成材阻燃加工法 30 3.4 試驗設施與設備 31 3.4.1 高溫爐艙總覽 31 3.4.2 試驗材料與設備 32 3.5 材種選定 34 3.6 TSC構件試體規劃 34 3.6.1 試體設計 34 3.6.2 阻燃加工處理 37 3.6.3 試驗規劃 41 3.7 TSC樑試體規劃 43 3.7.1 試體設計 43 3.8 試驗規劃 46 第4章 試驗結果 48 4.1 前言 48 4.2 炭化深度量測方法 48 4.2.1 TSC構件炭化深度取得之方法 49 4.2.2 TSC樑炭化深度取得之方法 51 4.3 TSC構件試驗結果整理 53 4.3.1 花旗松TSC構件試驗結果 53 4.3.2 柳杉TSC構件試驗結果 66 4.4 TSC樑試驗結果整理 81 4.4.1 高溫爐內溫度記錄分析 81 4.4.2 TSC內部I型鋼溫度紀錄分析 83 4.4.3 炭化率及防火性能探討 85 4.4.4 炭化深度及炭化速率評估 90 4.5 TSC之防火性能綜合比較分析 93 4.5.1 多種炭化深度驗證方法評估 93 4.5.2 TSC構件及TSC樑防火性能差異 96 第5章 結論與建議 98 5.1 結論 98 5.2 後續研究建議 101 參考文獻 103

中文文獻
[C1] Truong Di Ha L.(2020)。"鋼木組合梁之彈塑性靜曲行為及防火機制研究"。博士, 建築系, 國立臺灣科技大學。
[C2] 黃信銘(2008)。"框組式木構造耐火性能與木構材炭化率之研究"。碩士, 建築學系, 國立成功大學。
[C3] 楊德新(2007)。"中小徑木製造構造用集成材及其工程性能之研究"。博士, 森林環境暨資源學研究所, 國立臺灣大學。
[C4] 黃清吟(2009)。"木材燃燒面面觀" 林業研究專訊 vol. 16, no. 6, pp. 20-25
[C5] 蔡孟廷;方尹萍;張紋韶(2018)。都市木造的未來。 台北:麥浩斯。
[C6] Cns11031(2019)。"結構用集成材-Structural glued-laminated timber"
[C7] 中華木質構造建築協會(2014)。國產造林木材應用於木構造建築。 台北市:行政院農業委員會林務局。
[C8] 內政部建築研究所(2011)。木構造防火設計施工參考手冊之研究-內政部建研所。
[C9] 王松永(2018)。木材物理學:強度性質篇。 台灣:新學林。
[C10] 日經建築(2019)。世界新式木造建築設計-Wood Architecture in the World。
[C11] 高健斌;蔡孟廷(2020)。"阻燃加工木材運用在鋼木混合構件之防火性能研究" 建築研究暨設計成果發表會
[C12] 行政院國家科學委員會(2004)。"鋼結構與複合樑-柱接頭火害反應之數值模擬(I)"
[C13] 郭武彥(2003)。"防火時效用膨脹型塗料之研究"。碩士, 營建工程系, 國立臺灣科技大學。
英文文獻
[E1] Winter W., Tavoussi K., Riola-Parada F., and Bradley A.(2016).Timber-Steel Hybrid Beams for Multi-Storey Buildings: Final Report.
[E2] Cabová K., Zeman F., Blesák L., Benýšek M., and Wald F.(2020)."Timber beam in virtual furnace" Journal of Structural Fire Engineering, vol. 11, no. 4, pp. 437-446
[E3] Mačiulaitis R., Jefimovas A., and Zdanevičius P.(2012)."Research of Natural Wood Combustion and Charring Processes" Journal of Civil Engineering and Management, vol. 18, no. 5, pp. 631-641
[E4] Aitc(2003).Superior Fire Resistance.
[E5] Cachim P.B. and Franssen J.-M.(2009)."Assessment of Eurocode 5 Charring Rate Calculation Methods" Fire Technology, vol. 46, no. 1, pp. 169-181
[E6] Stiemer S., Tesfamariam S., Schneider J., Popovski M., and Karacabeyli E.(2012).Development of Steel-Wood Hybrid Systems for Buildings under Dynamic Loads.
[E7] Khorasani Y.(2011)."Feasibility study of hybrid wood steel structures".Master Civil Engineering, University of British Columbia.
[E8] Lange D., Boström L., Schmid J., and Albrektsson J.(2014).The influence of parametric fire scenarios on structural timber performance and reliability.
[E9] Standard E.(1995)."Eurocode 5: Design of timber structures - Part 1-2: General Structural fire design"
[E10] Schmid J., Klippel M., Just A., and Frangi A.(2014)."Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the Reduced Cross-Section Method" Fire Safety Journal, vol. 68, pp. 81-99
[E11] Wen L., Han L., and Zhou H.(2015)."Factors Influencing the Charring Rate of Chinese Wood by using the Cone Calorimeter" BioResources, vol. 10,
[E12] White R.H. and Nordheim E.V.(1992)."Charring rate of wood for ASTM E 119 exposure" Fire Technology, vol. 28, no. 1, pp. 5-30
[E13] Council A.W.(2015).Calculating the Fire Resistance of Exposed Wood Members-Technical Report.
[E14] Council A.W.(2018).National Design Specification(NDS)-for Wood Construction.
[E15] Jasieńko J. and Nowak T.(2014)."Solid timber beams strengthened with steel plates – Experimental studies" Construction and Building Materials, vol. 63, pp. 81–88
[E16] Stiemer S., Dickof C., and Tesfamariam S.(2012).Timber-Steel Hybrid Systems: Seismic Overstrength and Ductility Factors.
[E17] Furumura F., Ave T., Kim W.J., and Okabe T.(1985)."Nonlinear elasto-plastic creep behavior of structural steel under continuously varying stress and temperature" Journal of Structural and Construction Engineering (Transactions of AIJ), vol. 353, pp. 92-102
[E18] Huang Z.-F., Tan K.-H., and Ting S.-K.(2006)."Heating rate and boundary restraint effects on fire resistance of steel columns with creep" Engineering Structures, vol. 28, no. 6, pp. 805-817
[E19] Kodur V., Dwaikat M., and Fike R.(2010)."High-Temperature Properties of Steel for Fire Resistance Modeling of Structures" Journal of Materials in Civil Engineering, vol. 22, no. 5, pp. 423-434
[E20] Carling O.(1989)."Fire resistance of joint details in load bearing timber construction - a literature survey" BRANZ Study Report SR 18,
[E21] Dhima D., Audebert M., and Bouchaïr A.(2014)."Analysis of the Thermo-Mechanical Behaviour of Steel-to-Timber Connections in Bending" Journal of Structural Fire Engineering, vol. 5, no. 2, pp. 97-112
[E22] Aarnio M.(1979)."Glulam timber construction and the fire resistance properties of the joints". Division of Building Engineering, Helsinki School of Technology.
[E23] Ek D.R.N.(2018)."Study of glue-laminated timber connections with high fire resistance using expanded steel tubes". Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology.
[E24] Audebert M., Dhima D., Taazount M., and Bouchaïr A.(2011)."Numerical investigations on the thermo-mechanical behavior of steel-to-timber joints exposed to fire" Engineering Structures, vol. 33, no. 12, pp. 3257-3268
[E25] Buchanan A.H.(2000)."Fire performance of timber construction" Progress in structural engineering and materials, vol. 2, no. 3, pp. 278-289
[E26] International Standard Iso 834-1:1999.(1999)."Fire-resistance tests — Elements of building construction —Part 1: General requirements"
[E27] Le T.D.H. and Tsai M.T.(2019)."Experimental Assessment of the Fire Resistance Mechanisms of Timber-Steel Composites" Materials (Basel), vol. 12, no. 23,
[E28] Paik J.K., Ryu M.G., He K., Lee D.H., Lee S.Y., Park D.K., and Thomas G.(2020)."Full-scale fire testing to collapse of steel stiffened plate structures under lateral patch loading (part 2) – with passive fire protection" Ships and Offshore Structures, pp. 1-12
[E29] Fahrni R., Klippel M., Just A., Ollino A., and Frangi A.(2019)."Fire tests on glued-laminated timber beams with specific local material properties" Fire Safety Journal, vol. 107, pp. 161-169
日文文獻
[J1] 中村賢一;最上浤二(1985)。構造用集成材の耐火性能実験。 日本:国立研究開発法人-建築研究資料。

網路文獻
[W1] CreaTimber-WHY TIMBER
https://creatimber.com/why-timbers/#
[W2] SWEDISH-WOOD-Structural-elements https://www.swedishwood.com/building-with-wood/construction/wood-and-wood-based-products/structural-elements/
[W3] 國家林產技術平台
https://www.cwcba-wqac.org.tw/forest-tech/index.php
[W4] ARCWood
http://arcwood.ee/en/glulam
[W5] Setra - The Production of Glulam
https://www.setragroup.com/en/glulam/om-limtra/the-production-of-glulam/
[W6] CLAD global - Kengo Kuma-designed New National Stadium completed in Tokyo
https://www.cladglobal.com/CLADnews/architecture-design/Kengo-Kuma-designed-New-National-Stadium-completed-in-Tokyo/343844
[W7] Olympics TOKYO 2020
https://olympics.com/tokyo-2020/en/news/olympic-stadium-officially-opened

QR CODE