簡易檢索 / 詳目顯示

研究生: 林後坤
Hou-Kun Lin
論文名稱: 過量鋰陰極材料之合成與其電化學分析
Synthesis and Electrochemical Analysis of Excess-Lithium Cathode Materials
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tsa-Chuan Chou
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 141
中文關鍵詞: 鋰電池陰極材料過量鋰氧化鋯表面改質GSAS
外文關鍵詞: Electrochemical cycling., GSAS, Li[Li(1/18)Ni1/3Co1/6Mn4/9]O2, Li[Li0.2Ni0.2Mn0.6]O2
相關次數: 點閱:288下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
  本研究室以溶膠凝膠法合成過量鋰陰極材料Li[Li0.2 Ni0.2 -Mn0.6]O2,測試其充放電特性,其第一圈電容量可達275mAh/g,並在循環充放二十圈後,能持續穩定放電在250mAh/g左右的電容量,本論文之主題在於提昇此材料之充放電速率能力及更佳的循環充放電特性,選由模版合成法合成柱狀結構陰極材料Li[Li0.2 Ni0.2Mn0.6] -O2,以期提高充放電速率能力,並配合以氧化鋯表面改質提高其循環充放電穩定性,比較溶膠凝膠法及共沈澱法所得材料之特性。此外,本論文亦針對另一過量鋰陰極材料Li[Li1/18Ni1/3Co1/6Mn4/9]O2,以臨場X光來觀察充電狀態時結構的變化,討論其各晶面位移或衰減的原因。
  於模版合成的部分,雖成功合成出層狀結構的陰極材料,但是其中僅以當表面自安定化改質2 mole% ZrO2 能保持原柱狀結構,未進行自安定化反應或反應物濃度僅1 mole% ZrO2的產物,其於燒結900oC後,皆已無柱狀結構,但2 mole%的相圖中,又呈現出明顯ZrO2自成一相,非我們所希望,僅覆蓋於陰極材料表面的情形,於充放電測之後,發現其電阻過而大,無法進行充放電,故其研究關鍵,就在於如何保持產物形狀又能不因為過多的金屬氧化物造成電阻上升。
  共沈澱合成法的過程中有些許製程問題的存在,故合成出有陽離子混合的產物,其反應在XRD圖上的即為層狀結構中I003與I104之間的比例不正確,以套裝軟體GSAS來精算材料中Li及Ni的混排情形,結果顯示出約有0.0862的Ni佔據了Li的3a層,而相對Li也有0.0862的莫耳比進入過渡金屬層中,其計量式建議為Li0.9183 -Ni0.0862[Li0.2862Ni0.1138Mn0.6]O2。
 Li[Li1/18Ni1/3Co1/6Mn4/9]O2於充電時,以臨場X光觀察其結構變化,發現鎳氧化同時伴隨鋰離子的遷出造成a軸的緊縮,c軸的拉伸,致使致使原有的晶面會有位移的現象,至於在鎳氧化時晶面的強度衰減,大多來自鋰離子遷出造成氧的負電荷相斥,而使過渡金屬與氧之間的鍵結改變,導致晶面的偏移或消失,而反應在XRD圖上鋒的減弱,而氧的流失造成材料中的氧缺陷,更使得所有晶面都受到影響,而導致鋒強度逐漸衰減。
  而在充電至高電位4.70V後,又出現另一電位平台,約在4.70-4.87V處,使晶格參數a、c軸皆上升,晶格體積增加,亦能提供約72 mAh/g的電容量,依估算此材料在4.70-4.87V時,鋰離子該以全數遷出,若考慮過渡金屬離子有遷出,則必發生嚴重相變化,但由本實驗所得之XRD相圖並無發現嚴重相變化,故推測此為電極與電解質之間的反應反應的方式與機制,仍須佐以其他研究加以驗證。


Abstract
The Li[Li(1-2x)/3MxMn(2-x)/3]O2 electrode materials emerged has a promising cathode for high energy density lithium-ion batteries. In this work, we have made an attempt to prepare Li[Li0.2Ni0.2Mn0.6]O2 compound of macro and nano-size powders by employing various preparative methods and then modified by coating with zirconium oxide. We have refined our observed results by crystallographic software to understand the changes in the super lattice structure and degree of cation mixing. We have also investigated the cobalt doped in Li[Li(1-2x)/3NixMn(2-x)/3]O2 compound during in-situ electrochemical cycling by synchrotron X-ray radiation.

The Li[Li(1-2x)/3NixMn(2-x)/3]O2 (x = 0.2) compound has been prepared by sol-gel, co-precipitation and template process. The resulted electrode powders/nanowires coated with zirconium oxide on its surface. The phase and surface morphology of the as prepared and modified electrode have been identified by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. The single phase and layer structure have been found for all as prepared and except for the electrode coated with 1.0% of ZrO2 on the surface of the nano-wires obtained by template synthesis process. The integrated intensity ratio of (003) and (104) of Bragg’s reflections are used to determine the cation mixing and it is serious for the electrode materials prepared by co-precipitation method. The particle of micron in size and their distribution in the lattice has been identified from SEM micrographs. It is worth to mention that the nano-wire structure is maintained for the uncoated and coated electrode with 2% of ZrO2 and the results are consistent with that of the XRD analysis

The electrochemical cycle performance of the Li[Li0.2Ni0.2Mn0.6]O2 electrode prepared by sol-gel and co-precipitation has been performed in the potentials 2.5 – 4.7V at various current densities. The specific capacity of various electrodes is found to be comparable and the capacity fading is low for the modified electrode prepared by co-precipitation method. The variation in the specific capacity and the cycle performance of the as received and modified electrodes may be due to the change in phase and particle morphology as evidenced from XRD and SEM, respectively. Further, we have refined our XRD results using GSAS software to understand the super lattice reflections, the integrated intensity ratio of (003) and (104) and occupancy of cations to determine the degree of cation mixing (Ni and Li). The GSAS refinement results showed that the 43.1% and 8.62% of Ni and Li, respectively, occupied in the transition metal layer and the electrode composition is expected to be Li0.9183 Ni0.0862[Li0.2862Ni0.1138Mn0.6]O2.

In order to understand the changes in the structure of the Co-doped Li[Li(1/18)Ni1/3Co1/6Mn4/9]O2 compound, we have conducted in-situ XRD measurements at the charging process. The charging curves clearly showed two plateaus at the potential regions around 4.4 and 4.7 V and are attributed to the oxidation of nickel and loss of oxygen, respectively. The calculated lattice parameters a and c decreases and increases, respectively, in the first plateau (4.4V) region and increases in the second plateau region (4.7 V). The estimated capacity in the second plateau region is around 72 mAh/g . If we consider that this charge capacity is due to the contribution from the metal ions which will reflect on the Bragg’s reflection in the XRD pattern. Our in-situ XRD analysis did not revealed any changes in change in the peak position or phase. Therefore, the appearance of second plateau region capacity attributed to the result of side reactions that occurred during the electrochemical cycling and our results are consistent with the reported data in the literature.
The electrochemical results of the Li[Li0.2Ni0.2Mn0.6]O2 electrode suggests that the synthesis conditions need to optimized in order to maintain the nano-wire shape thereby lowering resistance on the surface of the electrode. The anomalous capacity of the Li[Li(1-2x)/3MxMn(2-x)/3]O2 (M = Ni and Co) electrode could be possible alternative to the LiCoO2 cathode for high energy density lithium-ion batteries.

目錄 中文摘要……………………………………………………………I 英文摘要……………………………………………………………III 致謝…………………………………………………………………VI 目錄…………………………………………………………………VII 圖目錄………………………………………………………………XI 表目錄….…………………………………………………...……....XVIII 名詞解釋….………………………………………………...……....XVIII 符號對照表….……………………………………………...……....XVIII 第一章 緒論…………………………………………………………..1 1.1前言…………………………………………………………………1 1.2研究動機與目的……………………………………………………3第二章 文獻回顧…………………………………..…………………..4 2.1鋰離子二次電池……………………………………………………4 2.1.1 陽極……………………………………………………………5 2.1.2 電解質…………………………………………………………6 2.1.3 陰極……………………………………………………………7 2.2陰極材料……………………………………………………….…...8 2.2.1 Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料…………………………...8 2.2.2Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2陰極材料....................................17 2.3模板合成法…………………………………………………...…….19 2.4陰極材料表面金屬氧化物改質法……………………………...….24 2.4.1表面金屬氧化物改質之陰極材料……………………......…...24 第三章 實驗方法及原理..…………………………………………......30 3.1儀器設備……………………………………………………………30 3.2實驗藥品……………………………………………...………….…31 3.3 溶膠凝膠合成法…………………………………………………...32 3.3.1 Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料…………………………..32 3.3.2 Li[Li1/18Ni1/3Co1/6Mn4/9]O2陰極材料…………………………35 3.4 共沉澱合成法.…………………………………………………….38 3.5模版合成法……..…………………………………………………..40 3.6 陰極材料表面改質方法…………………………..……………….43 3.6.1 陰極材料表面改質方法(I) 自安定化反應……………...….43 3.6.2 陰極材料表面改質方法(II) 產物物理吸附改質法…...…...44 3.7 陰極極片製備……………………………...………………………45 3.8 鈕扣型電池組裝…………...…………………………………........47 3.9 XRD繞射分析………….………………………………………….49 3.10 SEM表面形態分析…………………………………..…………..50 3.11鈕扣型電池充放電測試.……………………………..…….……..50 第四章 結果…………………………….……………………...….…...51 4.1 Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料 …….………………………....51 4.1.1不同合成法所得材料之晶格結構…………………………...51 4.1.2所得材料之表面型態……..…………………………………57 4.1.3 TEM觀察表面改質後陰極材料表面型態…………………62 4.1.4 充放電性能測試…………………………………………….65 4.2 Li[Li1/18Ni1/3Co1/6Mn4/9]O2陰極材料……………………….………81 4.2.1 XRD晶格結構分析………………..………………….........81 4.2.2 SEM 表面型態…………………….………………………82 4.2.3 充電狀態下電位與電容量關係圖……..………………..…83 4.2.4 充電狀態下微分電容量與電位關係圖……………..…….84 4.2.5 充電狀態下以臨場X光繞射觀察結構變化圖表…….....86 4.2.6 以CaRIne分析各晶面主要構成元素及其結構因子…….97 第五章討論…,.…..…………………………………………………108 5.1 Li[Li0.2Ni0.2Mn0.6]O2 陰極材料………………………….………..108 5.1.1 模板合成法製程條件細論…………………………………108 5.1.2 銅板與乾冰急速冷卻法對材料晶格參數影響……………113 5.1.3 GSAS分析陽離子混合結果討論………………….……….114 5.1.4 充放電特性討論……………………………………………119 5.2 Li[Li1/18Ni1/3Co1/6Mn4/9]O2陰極材料…………………………...…126 5.2.1 充電狀態下結構變化情形…………………………………126 5.2.2 以CaRIne模擬結果討論晶面……………………………..128 第六章 結論……………………………………………………..…....132 第七章 參考文獻.................................................................................134

第七章 參考文獻
[1]楊模華, 嵌入式過渡金屬氧化物在鋰電池電極材料上的應用. 工業材料,144,157(2000).
[2]Yamaki J., Tobishima S., Hayashi K., Saito K., Nemoto Y. and Arakawa M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , J. Power Sources , 74(2) 219-227 (1998).
[3]Delmas, C., Braconnier J. J.and Haginmuller P., A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction, Mater. Res. Bull., 17 117 (1982).
[4]Molenda J., Stoklosa A. and Bak T., Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties, Solid State Ionics,36 53 (1989).
[5]Passerini, S., Scrosati B.and Gorenstein A., The intercalation of lithium in nickel oxide and its electrochemical properties. J. Electrochem. Soc. ,137 3297(1990).
[6]Dahn, J. R., Sacken U. V. and Michal C. A., Structure and electrochemistry of Li(1+x)NiO2 and A new Li2NiO2 phase with the Ni(OH)2 structure,Solid State Ionics,44 87(1990).
[7]Shao-Horn Y., Hackney S. A., Armstrong A. R., Bruce P. G., Gitzendanner R., Johnson C. S. and Thackeray M. M., Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging, J. Electrochem. Soc., 146(7) 2404-2412(1999).
[8]Numata K.,Sakaki C.and Yamanaka S., Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3, Solid State Ionics,117 (3-4) 257-263 (1999).
[9]Lu, Z. H.; Dahn, J. R., Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies, J. Electrochem. Soc.,149(7) A815-A822 (2002).
[10]Lu Z. H.,Beaulieu L. Y., Donaberger R. A., Thomas C. L., Dahn J. R., Synthesis, structure and electrochemical behavior of Li[NixLi(1/3-2x/3) -Mn(2/3-x/3)]O2, J. Electrochem. Soc., 149(6) A778-A791(2002).
[11]Lu Z.,MacNeil D.D. and Dahn J.,Layer cathode materials of Li[NixLi(1/3-2x/3) Mn(2/3-x/3)]O2 for lithium-ion batteries,Electrochem. Slid-State Lett.4 (11) A191-A194 (2001).
[12]Richard M.N.,Koetschau I., and Dahn J.R., In Situ X-Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology,J. Electrochem. Soc.,144 554 (1997).
[13]Richard M.N.,Fuller E.W., and Dahn J.R., Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3,Solid State Ionics,117 257 (1999).
[14]Ohzuku T., Ueda A. and Nagayama M., Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium cells, J. Electrochem. Soc.,140,1862(1993).
[15]Young-Sik Hong, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang and Min Gyu Kim, Synthesis and electrochemical properties of nanocrystalline Li[NixLi1/3-2x/3Mn2/3-x/3]O2 prepared by a simple combustion method, J. Mater. Chem. ,14 1424-1429(2004).
[16]Kwon I.,and Song M.Y., Electrochemical properties of LiCoyMn2−yO4 synthesized by the combustion method for lithium secondary battery,Solid State Ionics,158 103 (2003).
[17]Manoharan S.S.,and Patil K.C.,J. Am. Ceram. Soc.,75 1012 (1992).
[18]Robertson A.D.,and Bruce P.G.,Chem. Commun., Pyrylium -containing polymers as sensory materials for the colorimetric sensing of cyanide in water,2790 (2002).
[19]Ceder G.,Chiang Y.-M.,Sadoway D.R.,Aydinol M.K.,Jang Y.-I.,and B.Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations,Nature,392 (16) 694 (1998).
[20]Yoon W.S.,Kim K.-B.,Kim M.-G.,Lee M.-K.,Shin H.-J. and Lee J.-M., Oxygen Contribution on Li-Ion Intercalation-Deintercalation in Li -AlyCo1–yO2 Investigated by O K-Edge and Co L-Edge X-Ray Absorption Spectroscopy,J. Electrochem. Soc.,149 (10) A1305 (2002).
[21] Myung S.T.,Komaba N.,and Kumagai N., Hydrothermal Synthesis of Orthorhombic LiCoxMn1–xO2 and Their Structural Changes during Cycling,J. Electrochem. Soc.,149 A1349 (2002).
[22] J.-H. Kim, C.W. Park and Y.-K. Sun, Stynthesis and electrochemical behavior of Li[Li0.1Ni(0.35-x/2)CoxMn(0.55-x/2)]O2 cathode materials,Solid State Ionics,164 43-49 (2003).
[23]Charles R. Sides, Naichao Li, Charles J. Patrissi, Bruno Scrosati, and Charles R. Martin, Nanoscale materials for lithium-ion batteries, MRS BULLETIN/AUGUST (2002).
[24] Yong Jeong Kim, Jaephil Cho, Tae-Joon Kim, and Byungwoo Park, Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings, J. Electrochem. Soc., 150(12) A1723-A1725 (2003).
[25] Wang H.,Jang Y.I.,Huang B.,Sadoway D.R.,and Chiang Y.M., TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries,J. Electrochem. Soc.,146 473(1999)
[26]Che G.,Lakshmi B.B.,Martin C.R.,Fisher E.R.,and Ruoff R.A., Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method,Chem. Mater.,10 260 (1998).
[27]Che G.,Fisher E.R.,and Martin C.R., Carbon nanotubule membranes for electrochemical energy storage and production,Nature,393 346 (1998).
[28] Naichao Li, Charles R.Martin. J.Partrissi, Guanglin Che, and Charles R. Martin, Rate Capabilities of Nanostructured LiMn2O4electrodes in aqueous electrolyte,J. Electrochem. Soc.,147(6) 2044-2049 (2000).
[29] Patrissi C.J.,and Martin C.R., Sol-Gel-Based Template Synthesis and Li-Insertion Rate Performance of Nanostructured Vanadium Pentoxide,J. Electrochem. Soc.,146 3176 (1999).
[30]Li N.,Martin C.R.,and Scrosati B., A High-Rate, High-Capacity, Nanostructured Tin Oxide Electrode,Electrochem. Solid-State Lett.,3 316 (2000).
[31] Martin C.R.,Li N.,and Scrosati B, Nanomaterial-based Li-ion battery electrodes, J. Power Sources,97-98 240(2001).
[32] Li N.,and Martin C.R., J. Electrochem. Soc.,148 A164(2001).
[33]Lakshmi B.B.,Patrissi C.J.,and Martin C.R., A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis.,Chem. Mater.,9 2544 (1999).
[34]Cepak V.M.,Hulteen J.C.,Che G.,Jirage K.B.,Lakshmi B.B.,Fisher E.R.,and Martin C.R., Fabrication and characterization of concentric-tubular composite micro and nanostructures using the template-synthesis method,J. Mater. Res.,13 3070(1998).
[35]Che G.,Jirage K.B.,Fisher E.R.,Martin C.R.,and Yoneyama H., Chemical-Vapor Deposition-Based Template Synthesis of Microtubular TiS2 Battery Electrodes,J. Electrochem. Soc.,144 4296(1997).
[36]Charles J. Patrissi and Charles R. Martin, Improving the volumetric energy densities of nanostructured V2O5 electrodes Using the template method, J. Electrochem Soc., 148(11) A1247-A1253(2001).
[37] Fleischer R.L.,Price P.B.,and Walker R.M.,Nuclear Tracks in Solids,(University of California Press,Berkeley,1975).
[38] Hornyak G.L.,Patrissi C.J.,and Martin C.R., Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/ -Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,J. Phys. Chem. B,101 1548 (1999)..
[39] Sehgal J.,and Ito S., Brittleness of glass, J. Non-Cryst. Solids,253 126(1999)
[40]Sun Y.K., Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted sol–gel method for rechargeable lithium batteries,J. Power Sources,83 223 (1999).
[41]Choi Y.M.,and Pyun S.I., Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode, Solid State Ionics,99 173(1997).
[42]Cho J.,Kim Y.J.,Park B., Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell,Chem. Mater.,12 3788(2000).
[43]Cho J.,Kim Y.J.,Kim T.J.,and Park B., Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell,Angew. Chem.,Int. Ed. Engl.,40 3367(2001).
[44]Cho J.,Kim Y.J., and Park B., LiCoO2 Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase,J. Electrochem. Soc.,148 A1110 (2001).
[45]Callister W.D.,Jr.,Materials Science and Engineering:An Introduction, 4th ed .,Appendix C,787,John Wiley & Sons,New york(1997)
[46] Wang H.,Jang Y.I.,Huang B.,Sadoway D.R.,and Chiang Y.M., Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes,J. Power Sources,81-82 594(1999).
[47]Aurbach D.,Gamolsky K.,Markovsky B.,Salitra G.,Gofer Y.,Heider U.,Oesten R.,and Schmidt M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M = Ni, Mn),J.Electrochem. Soc.,147,1322(2000).
[48] Jaephil Cho,Tae-Joon Kim, Yong Jeong Kim, and Byungwoo Park, High-Performance ZrO2-Coated LiNiO2 Cathode Material, Electrochem. Solid-State lett., 4(10) A159-A161(2001)
[49]Zhaohui Chen, and J.R. Dahn, Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5V, Electrochem. Solid-State Lett, 5(10) A213-A216(2002)
[50]Hwang B.J.,Tsai Y.W.,Carlier D.,and Ceder G.,Chem. Mater.,15 3676-3682(2003)

QR CODE