簡易檢索 / 詳目顯示

研究生: 郭庭佑
Ting-you Guo
論文名稱: 具次閘極結構之橫向式功率金氧半場效電晶體之研究
Study of Lateral Power MOSFET with Sub-gate Structure
指導教授: 莊敏宏
Miin-horng Juang
口試委員: 張勝良
Sheng-lyang Jang
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 76
中文關鍵詞: 次閘極功率金氧半場效電晶體橫向式絕緣矽崩潰電壓導通電流
外文關鍵詞: sub-gate, power MOSFET, lateral, SOI, blocking voltage, on-state current
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率金氧半場效電晶體是重要的分立元件,具有低導通功率損失、高輸入阻抗、快速切換、以及承受大電壓和大電流。由於元件的特性可當作一個開關,而主要應用在功率轉換、整流、線路保護等等。以電子產品來說用途極為廣泛,例如:通訊產品、顯示器驅動電路、馬達控制、汽車電子零件、照明設備、變頻器、變壓器、以及電源供應器等等。
    為了順應電路積體化的潮流,將功率元件與電路整合在同一晶片上,因此設計橫向式功率金氧半場效電晶體在絕緣矽晶圓上。我們利用TSUPREM-4製程模擬軟體和MEDICI元件特性模擬軟體來幫助設計元件。
    本論文中,傳統的橫向式功率金氧半場效電晶體以及具次閘極結構之橫向式功率金氧半場效電晶體結構被比較,具次閘極結構之橫向式功率金氧半場效電晶體能有效改善崩潰電壓以及導通電流。
    使用次閘極結構可以有效地改變傳統的橫向式功率金氧半場效電晶體的橫向能帶,導致電位分布更平坦,因此有較小的電場。相較於傳統的橫向式功率金氧半場效電晶體,具次閘極結構之橫向式功率金氧半場效電晶體可以達到更大的導通電流,因為次閘極可以感應更多的導電電子,使得漂移區的串聯電阻變的更小。


    Power MOSFETs are important discrete devices. They have low conduction power loss, high input impedance, high switching speed, high blocking voltage, and high operating current. The applications of power devices are mainly used in power conversion, rectify, protection, etc. It is used widely for electronic products like communications products, display driver circuits, motor controls, automotive electronic components, lighting, inverters, transformers, and power supplies, etc.
    In keeping with the trend of integration circuits, power devices and circuits have to integrate on the same chip. Therefore, we design a lateral power MOSFET on the Silicon on Insulator (SOI) wafer. We use TSUPREM-4 process simulator and MEDICI device simulator to help designing the device.
    The improved lateral power MOSFET with sub-gate can effectively improve the breakdown voltage and on-state current. The usage of the sub-gate structure can effectively change the lateral energy band of the conventional lateral power MOSFET, which causes a more gradual potential distribution and thus a smaller electric field. The lateral power MOSFET with sub-gate achieves a larger on-state current than the conventional lateral power MOSFET. Since the sub-gate can induce more conducting electrons, a smaller series resistance of the drift region can be formed.

    Abstract (Chinese)..............................i Abstract..............................ii Acknowledgement (Chinese)..............................iii Contents..............................iv Figure Captions..............................vi Chapter 1 Introduction..............................1 1-1 Device application..............................1 1-2 The basic structure of the power MOSFET..............................1 1-2-1 The band diagram..............................4 1-2-2 The Breakdown Voltage..............................4 1-2-2-1 The Avalanche Breakdown..............................4 1-2-2-2 The Punch-through Breakdown..............................5 1-2-2-3 Tunneling Breakdown..............................5 1-2-3 The Specific On-state Resistance..............................6 1-3 Motivation..............................6 1-4 Thesis Organization..............................7 Chapter 2 Device scheme..............................13 2-1 The conventional lateral power MOSFET..............................13 2-2 The lateral power MOSFET with sub-gate..............................19 Chapter 3 Result and Discussion..............................25 3-1 The electrical characteristic of the conventional lateral power MOSFET and the lateral power MOSFET with sub-gate..............................25 3-1-1 The Id-Vd curve of the conventional lateral power MOSFET and the lateral power MOSFET with sub-gate..............................25 3-1-3 The two-dimensional electric field distributions of the conventional lateral power MOSFET and the lateral power MOSFET with sub-gate..............................26 3-2 The electrical characteristic of the lateral power MOSFET with sub-gate in different bias..............................34 3-2-1 The Id-Vd curves of the lateral power MOSFET with sub-gate in different bias..............................34 3-2-2 The energy band diagrams of the lateral power MOSFET with sub-gate in different bias..............................35 3-2-3 The two-dimensional electric field distribution of the lateral power MOSFET with sub-gate in different bias..............................35 3-3 The parameters adjustment for the lateral power MOSFET with sub-gate..............................45 3-3-1 The parameters adjustment for the sub-gate length of 0.5 um and the distance of the sub-gate to the gate with 0.2 um, 0.5 um, and 0.8 um, respectively..............................45 3-3-1-1 The Id-Vd curves of the lateral power MOSFET with sub-gate in the different parameters..............................45 3-3-1-2 The energy band diagrams of the lateral power MOSFET with sub-gate in different parameters..............................46 3-3-1-3 The two-dimensional electric field distribution of the lateral power MOSFET with sub-gate in different parameters..............................47 3-3-2 The parameters adjustment for the distance of the sub-gate to the gate with 0.5 um and the sub-gate length of 0.3 um, 0.5 um, 1.0 um, respectively..............................48 3-3-2-1 The Id-Vd curves of the lateral power MOSFET with sub-gate in different parameters..............................48 3-3-2-2 The energy band diagrams of the lateral power MOSFET with sub-gate in different parameters..............................48 3-3-2-3 The two-dimensional electric field distribution of the lateral power MOSFET with sub-gate in different parameters..............................49 3-4 The lateral power MOSFET with long drift region..............................67 Chapter 4 Conclusions..............................73 Vita..............................76

    [1] B. J. Baliga, Power Semiconductor Devices, Boston, MA: PWS (1996)
    [2] N. Mohan, T. M. Undeland, W. P. Roobins, Power Electronic : Converters, Applications, and Design, John Wiley and Sons, 2nd edition, (1996)
    [3] B. J. Baliga, “Trends in Power Semiconductor Device”, IEEE Transactions on Electron Devices, Vol. 43, pp. 1717-1730 (1996)
    [4] J. H. Choi, Y. Mao, J. P. Chang, "Development of hafnium based high-k materials - A review", Materials Science and Engineering, Vol. 72, pp. 97-136 (2011)
    [5] S. Matsumoto, I. J. Kim, T. Sakai, T. Fukumitsu, T. Yachi, "Switching characteristics of a thin film-SOI power MOSFET", Japanese Journal of Applied Physics, Vol. 34, pp. 817-821 (1995)
    [6] X. B. Chen, J. K. Sin, "Optimization of the specific on-resistance of the COOLMOS", IEEE Transactions Electron Devices, Vol. 48, pp. 344-348 (2001)
    [7] Y. Hu, Q. Huang, G. Wang, S. Chang, H. Wang, "A novel high-voltage (> 600 V) LDMOSFET with buried N-layer in partial SOI technology", IEEE Transactions on Electron Devices, Vol. 59, pp. 1131-1136 (2012)
    [8] E. Napoli, "Deep depletion soi power devices", Proceedings of the International Semiconductor Conference, Vol. 1, pp. 3-12 (2006)
    [9] E. Napoli, F. Udrea, "Substrate engineering for improved transient breakdown voltage in SOI lateral power MOS", IEEE Electron Device Letters, Vol. 27, pp. 678-680 (2006)
    [10] B. H. Stark, T. C. Green, "Comparison of SOI power device structures in power converters for high-voltage, low-charge electrostatic microgenerators", IEEE Transactions on Electron Devices, Vol.52, pp. 1640-1648 (2005)
    [11] Y. Omura, "Proposal of high-temperature-operation tolerant SOI MOSFET and preliminary study on device performance evaluation", Active and Passive Electronic Components, Vol. 2011, pp. 1-8 (2011)
    [12] I. Ben Akkez, A. Cros, C. Fenouillet Beranger, P. Perreau, A. Margain, F. Boeuf, F. Balestra, G. Ghibaudo, "Characterization and modeling of capacitances in FD-SOI devices", Solid-State Electronics, Vol. 71, pp. 53-57 (2012)
    [13] S. Cao, A. A. Salman, J. H. Chun, S. G. Beebe, M. M. Pelella, R. W. Dutton, "Design and characterization of ESD protection devices for high-speed I/O in advanced SOI technology", IEEE Transactions on Electron Devices, Vol. 57, pp. 644-653 (2010)
    [14] X. Luo, T. Lei, Y. Wang, B. Zhang, F. Udrea, "A novel high voltage SOI LDMOS with Buried N-layer in a self-isolation high voltage integrated circuit", Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Vol. 2010, pp. 265-268 (2010)
    [15] B. Vogler, M. Rossberg, R. Herzer, L. Reusser, "Integration of 1200V SOI gate driver ICs into a medium power IGBT module package", Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Vol. 2010, pp. 97-100 (2010)

    無法下載圖示 全文公開日期 2017/06/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE