簡易檢索 / 詳目顯示

研究生: 洪鴻文
Hung-Wen Hung
論文名稱: 使用ASE頻譜切割技術光源設計10 Gb/s WDM-PON雙向傳輸系統
10-Gb/s Bidirectional WDM-PON Transmission Using Spectrum-sliced ASE Light Sources
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
曹恆偉
Hen-Wai Tsao
劉政光
Cheng-Kuang Liu
施天從
Tien-Tsorng Shih
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 分波多工被動光網增幅自發放射光源頻譜切割過強度雜訊抑制增益平坦化
外文關鍵詞: WDM-PON, ASE spectrum slicing, EIN suppression, gain-flattening
相關次數: 點閱:164下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出並展示一個遠端泵激WDM-PON架構來成功實現10 Gb/s對稱頻寬的雙向傳輸,此構想利用光放大器產生的「寬頻增幅自發性放射(ASE)」光源,經由「陣列式波導光柵(AWG)」切割成多個單一通道用作WDM-PON系統的多通道光源。應用增益飽和「半導體光放大器(SOA)」以串接方式去抑制每一通道的雜訊,之後下行鏈路每一通道使用「電致吸收調變器(EAM)」調變速率10.7 Gb/s的“不回復零格式(NRZ)”資料,同時假設本文所提架構傳輸會使用具7%冗餘的「前向錯誤更正(FEC)」碼修正系統誤碼率。我們還提出了一個紅頻帶(C/red-band)作種配置,以提供上行鏈路種子光源,並使用一個「反射式電致吸收調製器(REAM)」來作上行信號的編碼。為了實現傳輸距離達25公里,我們使用一個「大有效面積光纖(LEAF)」,以減少色散效應。為了補償被動元件和調變的損耗,我們採用「遠程泵激摻鉺光纖放大器(RP-EDFA)」提供上行和下行信號所需的額外增益。實驗結果證明,下行和上行傳輸共計可提供32個通道,每一通道 10 Gb/s資料速率可傳輸達25公里遠,相當於上/下行鏈路單方向總計都能提供320 Gb/s的傳輸容量。


    We propose and demonstrate a remotely pumped WDM-PON architecture to achieve 10 Gb/s symmetrical bandwidth for bidirectional transmission. In this scheme, a wideband amplified spontaneous emission (ASE) from an optical amplifier is sliced into multiple channels by an arrayed waveguide grating (AWG) and used as multi-channel optical sources for WDM-PON system. Each channel is noise suppressed by using a gain-saturated cascaded semiconductor optical amplifer (SOA) and then modulated at 10.7 Gb/s of nonreturn-to-zero (NRZ) signals by using electrochromic absorption modulator (EAM), assuming forward error correction (FEC) with 7% overheads for improving the bit error rate (BER) of system. We also propose a redband-seeding scheme to provide uplink seeding light and use a reflected electro-absorption modulator (REAM) to encode the upstream signals. In order to achieve a transmission up to 25 km distance, we use a larger effective area fiber (LEAF) to reduce the dispersion effect. To compensate the loss by passive components and modulation, we employ a remotely pumped erbium-doped fiber amplifier (RP-EDFA) to provide extra gain for both downstream and upstream signals. The experimental results show that the downstream and upstream transmission can provide 10 Gb/s data rate over 25 km for 32 channels, which corresponds to a total capacity of 320 Gb/s, on each direction.

    中文摘要 1 Abstract 2 誌謝 3 目錄 4 圖目錄 7 第一章 研究背景介紹 11 1.1 前言 11 1.2 被動光網之應用與發展趨勢 13 1.2.1 分波多工被動光網 17 1.2.2 寬頻譜切割技術光源 19 1.3 研究動機 24 1.4 論文架構 27 第二章 寬頻譜切割技術光源與文獻探討 28 2.1 前言 28 2.2 文獻探討 29 2.2.1 寬頻譜切割技術光源2.5 Gb/s傳輸系統之文獻探討 30 2.2.2 寬頻譜切割技術光源10 Gb/s傳輸系統之文獻探討 32 2.3 本文架構與設計概念 33 第三章 光元組件理論與特性分析 40 3.1 前言 40 3.2 ASE切割技術光源 40 3.2.1 ASE切割技術光源訊號品質之影響因素 40 3.2.2 系統設計之色散限制 42 3.3 SOA 43 3.3.1 SOA工作原理 44 3.3.2 SOA之EIN抑制原理分析 45 3.4 AWG對EIN抑制成效之劣化影響 50 3.5 光纖色散規格對EIN抑制成效之劣化影響 54 3.6 前向錯誤更正碼技術 55 第四章 實驗結果與數據分析 58 4.1 前言 58 4.2 各參數對系統SNR之影響評估 58 4.3 EIN抑制性能分析 63 4.3.1 ASE切割光源特性分析 63 4.3.2 EIN suppressor之組成分析 64 4.3.3 EIN suppressor之配置分析 66 4.3.4 不同波長之雜訊抑制比較 67 4.3.5 傳輸光纖與AWG對EIN抑制劣化之分析 69 4.3.6 遠端泵激對EIN抑制影響之分析 71 4.4 系統功率預算 73 4.4.1 功率損耗與遠端泵激架構分析 73 4.4.2 US/DS頻段之放大頻譜與增益量測 76 4.5 系統傳輸性能分析 80 4.6 多通道傳輸之串擾分析 85 4.7 使用寬頻譜切割光源架構之瓶頸 88 第五章 結論 92 5.1 研究成果討論 92 5.2 未來研究方向 93 參考文獻 95

    [1] ITU-T Recommendation G.694.1. Series G: Spectral grids for WDM applications: DWDM frequency grid, June 2006.
    [2] ITU-T Recommendation G.984.1, Series G: Gigabit-capable Passive Optical Networks (GPON): General characteristics, 2008.
    [3] ITU-T Recommendation G.987.1, SERIES G: 10 Gigabit-capable Passive Optical Network (XGPON): General Requirements, January 2010.
    [4] J. C. Palais, Fiber optic Communications, Pearson/Prentice Hall, 2005.
    [5] 張勝雄,楊慶忠,光解多工器濾波技術之介紹,遠東學報第二十卷第三期民國九十二年六月。
    [6] M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “ LED spectral slicing for single- mode local Loop application,” Electron. Lett., Vol. 24, pp. 389-390, 1988.
    [7] T. E. Chapuran, S. S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, “Broadband multichannel WDM transmission with superluminescent diodes and LEDs,” Globecom., Vol. 1, pp. 613-618, 1991.
    [8] 李易倫,利用半導體光放大器抑制寬頻譜光源雜訊之10 Gb/s對稱傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2014年。
    [9] A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” IEEE J. Lightw. Technol., Vol. 23, No. 8, pp. 2399–2409, Aug. 2005.
    [10] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photo. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.
    [11] 朱肇易,利用自發性放射光源之雙向傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2013年。
    [12] H. H. Lee, S. H. Cho, J. H. Lee, E. S. Jung, J. H. Yu, B. W. Kim, S. S. Lee, S. H. Lee, J. S. Koh, B. H. Sung, S. J. Kang, J. H. Kim, and K. T. Jeong, “First Commercial Service of a Colorless Gigabit WDM/TDM Hybrid PON System,” Proceeding OSA/OFC/NFOEC, pp. 1-3, Mar. 2009.
    [13] J. H. Yu, K. Nam, and W. K. Byoung, “Remodulation schemes with reflective SOA for Colorless DWDM PON,” J. of Optical Networking, Vol. 6, No. 8, pp. 1041-1054, 2007.
    [14] S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, “Single-mode operation of 500 Mbit/s moducated AlGaAs semiconductor laser by injection locking,” Electron. Lett., Vol. 16, No. 19, pp.746-748, 1980.
    [15] H. D. Kim, S.-G. Kang, and C. H. Lee, “A Low-Cost WDM Source with an ASE Injected Fabry-Perot Semiconductor Laser,” IEEE Photon. Technol. Lett., Vol. 12, No. 8, pp. 1067-1069, 2000.
    [16] C. H. Kim, J. H. Lee, D. K. Jung, Y. G. Han, and S. B. Lee, “Performance Comparison of directly-modulated, wavelength Locked Fabry-Pérot laser diode and EAM-modulated, spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” Proceeding OFC/NFOEC, Mar. 2007.
    [17] J. H. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Raman amplification- based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polariation-insensitive EAMs,” Optics Express, Vol. 14, No. 20, pp. 9036-9041, 2006.
    [18] 林昶佑,基於自發放射光源與遠端泵浦光放大的分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2012年。
    [19] D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength selection free transmitters,” J. Lightw. Technol., Vol. 23, No. 1, pp. 187-195, 2005.
    [20] J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, “WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry-Perot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source,” IEEE Photon. Technol. Lett., Vol. 18, No. 20, pp. 2108-2110, 2006.
    [21] H. H. Lee, S.-H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow bandwidth seed light source,” IEEE Photon. Technol. Lett., Vol. 22, No. 20, pp. 1542-1544, 2010.
    [22] S.-H. Cho, J. H. Lee, J. H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, and S. S. Lee, “Improving transmission performance in EIN limited 2.5-Gb/s spectral slicing loopback WDM-PON based on RSOA employing the dispersion management,” in Proc. International Conference on Optical Internet (COIN), 2010.
    [23] S. Kaneko, J.-I. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightw. Technol., Vol. 24, No. 3, pp. 1295-1301, 2006.
    [24] W. Mathlouthi, F. Vacondio, and L. A. Rusch, “High-bit-rate dense SS- WDM PON using SOA-based noise reduction with a novel balanced detection,” J. Lightw. Technol., Vol. 27, No. 22, pp. 5045-5055, 2009.
    [25] Z. Al-Qazwini and H. Kim, “Ultranarrow Spectrum-Sliced Incoherent Light Source for 10-Gb/s WDM PON,” J. Lightw. Technol., Vol. 30, No. 3, Oct. 2012.
    [26] J. Y. Kim, S. H. Yoo, S. R. Moon, D. C. Kim, and C. H. Lee, “400Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA- REAM,” in Proc. Optical Fiber Communication Conference (OFC), paper OWD 4.4, 2013.
    [27] 原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
    [28] G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., Vol. 25, pp. 2297–2306, 1989.
    [29] K. Sato and H. Toba, “Reduction of Mode Partition Noise by Using Semiconductor Optical Amplifiers” IEEE J. Quantum Electron., Vol. 7, No. 2, Mar./Apr. 2001.
    [30] M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron., Vol. 32, pp. 1801–1809, Oct. 1996.
    [31] H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of Dispersion, PMD, and PDL on the Light Sources Using Gain-Saturated Semiconductor Optical Amplifiers” IEEE J. Lightw. Technol., Vol. 24, No. 2, Feb. 2006.
    [32] K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” in Proc. IEEE Custom Integr. Circuits Conf. pp. 279–282, 2003.
    [33] A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, pp. 79–86, Nov./Dec. 2006.
    [34] 宋家瑋,光放大器使用於寬頻譜光源的分波多工被動光網路架構應用,國立台灣科技大學電子工程所碩士論文,2015年。
    [35] Agilent Tech, State of Art characterization of Optical components for DWDM Applications, Application Notes, 2000.
    [36] T. Akiyama, M. Sugawara, Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proceeding of the IEEE, Vol. 95, No. 9, pp. 1747-1766, Sept. 2007.

    QR CODE