簡易檢索 / 詳目顯示

研究生: 洪育倫
Yu-Lun Hung
論文名稱: 以密度泛函理論研究甲醇及水在鈀/氧化鋅(100)表面上的裂解反應
DFT Study of Methanol Decomposition and Water Dissociation on Pd/ZnO(100) Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 黃炳照
Bing-Joe Hwang
趙聖德
Sheng-Der Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 108
中文關鍵詞: 密度泛函理論氧化鋅(100)鈀金屬甲醇裂解反應水分解反應
外文關鍵詞: DFT; ZnO(10 0)
相關次數: 點閱:187下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用密度泛函理論(DFT)方法研究在鈀/氧化鋅(100)表面上的甲醇裂解及水分解反應。我們探討鈀金屬散佈於氧化鋅表面的兩種模式,2Pd/ZnO、6Pd/ZnO。前者用來研究鈀-鋅介面的反應性,後者則描述鈀金屬表面上的反應情形。此外,最佳化的吸附結構、能量、以及振動頻率皆計算於文章中。甲醇裂解反應的最初路徑包含了O-H鍵裂解產生CH3O,或是經由C-H鍵裂解生成CH2OH中間產物,接著生成CH2O、CHO、CO。相對的,經由C-O鍵裂解是較不可行的路徑。另外,我們也研究在鈀/氧化鋅上的水分解反應生成OH 和H。綜合以上兩種反應,其結果指出在鈀-鋅介面的反應性較在鈀金屬表面上佳。也就是說,當鈀原子散佈於氧化鋅表面時,低覆蓋率者有較好的反應活性。


First-principles density-functional theory (DFT) calculations have been performed to investigate sequential methanol decomposition, and water dissociation on the Pd/ZnO(100) surfaces. To explore the catalytic sites of the zinc oxide supported palladium surface, two surface models, 2Pd/ZnO and 6Pd/ZnO, were considered. The former was used to investigate the activity at the Pd-ZnO interface, and the latter for the reaction on the supported-Pd surface. The optimized structures, energetics and vibrational frequencies of the intial adsorbed states, intermediates and transition states were determined on these two surface models. In this work, we have investigated three possible methanol decomposition pathways including dehydrogenation via the O-H bond breaking to form methoxide (CH3O) fragment or C-H bond scission to generate hydroxymethyl (CH2OH) fragment at the beginning step, followed by steps involving formation of CH2O, CHO, CO, are found to be the most favorable reaction pathways. In contrast, pathways involving C-O bond cleavage are much less energetically favorable. In addition, the H2O dissociation on Pd/ZnO(10 0) surfaces was also investigated, and the results indicate that the activity for above reactions at the Pd-ZnO interface is higher than on the supported-Pd surface. From our calculations, we suggest that the low coverage of Pd atoms on ZnO surface should have better catalytic activity.

ABSTRACT .................................................................................................................. I CONTENTS............................................................................................................... III INDEX OF FIGURE ................................................................................................... V INDEX OF TABLE ................................................................................................ VIII Chapter 1: Introduction .............................................................................................. 1 1.1 Fuel cell ........................................................................................................... 1 1.1.1 Background ........................................................................................... 1 1.1.2 Fuel Cell Principle and Fuel Cell Types ............................................... 2 1.1.3 The Hydrogen Generation via Methanol .............................................. 3 1.1.4 CO Oxidation ........................................................................................ 7 1.1.5 Water Dissociation ................................................................................ 7 1.2 Catalytic Performances ................................................................................. 9 1.2.1 Catalyst Development ........................................................................... 9 1.2.2 Bravais-Miller index - Case of Hexagonal Structures ........................ 11 1.2.3 Palladium–Based Catalysts ................................................................. 12 1.3 This Research ............................................................................................... 16 Chapter 2: Methodology ............................................................................................ 17 2.1 Theoretical background............................................................................... 17 2.1.1 Quantum Chemistry ............................................................................ 17 2.1.2 Density Functional Theory ................................................................. 17 2.1.3 Periodic Systems ................................................................................. 20 2.1.4 Brillouin Zone Sampling..................................................................... 23 2.1.5 Plane Wave Basis Set .......................................................................... 27 2.1.6 Pseudopotential ................................................................................... 30 2.1.7 Ultrasoft-pseudopotential .................................................................... 34 2.1.8 Projected Augmented Wave (PAW) .................................................... 35 2.1.9 Generalized Gradient Approximation (GGA) ..................................... 38 2.1.10 Nudged Elastic Band Method (NEB) ............................................... 39 2.1.11 Linear Synchronous Transit (LST) ................................................... 41 2.2 Computational details .................................................................................. 43 2.2.1 Computational Methods ...................................................................... 43 2.2.2 Surface Model ..................................................................................... 45 a. Bulk .................................................................................................. 45 b. The Clean ZnO Surfaces .................................................................. 46 c. The Pd/ZnO(10 0) Surface .............................................................. 47 Ι. 2Pd/ZnO(10 0) Surface ........................................................... 47 ΙΙ. 6Pd/ZnO(10 0) surface ........................................................... 49 Chapter 3: Results and discussion ............................................................................ 50 3.1 Adsorbed Intermediates of Methanol Decomposition. ............................. 50 3.1.1 2Pd/ZnO(10 0) Surface ...................................................................... 50 3.1.2 6Pd/ZnO(10 0) Surface ...................................................................... 58 3.2 Reaction Pathways for Methanol Decomposition ..................................... 63 3.2.1 Hydrogen Atom Diffusion on Pd/ZnO Surface .................................. 63 3.2.2 Methanol Decomposition on 2Pd/ZnO(10 0) Surface ....................... 64 a. IS-A .................................................................................................. 64 b. IS-B .................................................................................................. 76 c. IS-B with Low H Coverage on Pd ................................................... 83 3.2.3 Methanol Decomposition on 6Pd/ZnO(10 0) Surface ....................... 88 3.2.4 CO Oxidation ...................................................................................... 93 3.3 Adsorption Configurations of Water .......................................................... 95 3.3.1 Water Monomer .................................................................................. 95 a. 2Pd/ZnO(10 0) Surface ................................................................... 95 b. 6Pd/ZnO(10 0) Surface ................................................................... 96 3.3.2 Water Dmer ......................................................................................... 97 3.4 Water Dissociation ....................................................................................... 99 3.4.1 Water Monomer .................................................................................. 99 a. 2Pd/ZnO(10 0) Surface ................................................................. 100 b. 6Pd/ZnO(10 0) Surface ................................................................. 101 3.4.2 Water dimer ....................................................................................... 103 Chapter 4: Conclsuion ............................................................................................. 107 References ................................................................................................................. 109

1. Grove, W. R. Phil. Mag. Ser. 1839, 314, 127.
2. Appleby, A. J. J. Power Sources 1990, 29, 3.
3. Bacon, F. T. Electrochim. Acta 1969, 14, 569.
4. Larminie, J; Dicks, A. Fuel Cell Systems Explained 2nd ed.; Wiley Inc.: England. 2003
5. Perryf, M. L.; Fuller, T. f. J. Electrochem. Soc. 2002, 7, 149.
6. Bruijn. F. de Green Chem. 2005, 7, 132.
7. Steele, B. C. H.; Heonzel, A. Nature 2001, 414, 345.
8. Momirlan. M.; Veziroglu. T.N., Int. J. Hydrogen Energy. 2005, 30, 795.
9. Vaidya, P. D.; Rodrigues, A. E. Chem. Eng.J. 2006, 117, 39
10. Semelsberger, T. A.; Borup, R. L.; J. Power Sour. 2006, 155, 340.
11. Turco, M.; Bagnasco, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Ramis,
G.; Busca, G. J. Catal. 2004, 228, 56.
12. Agrell, J.; Birgersson, H.; Boutonnet, M.; Melian-Cabrera, I.; Navarro, R. M.; Fierro, J. L. G. J. Catal, 2003, 219, 389.
13. Wang, S.; Wang, S. J. Power Sour. 2008, 185, 451.
14. Agrell, J.; Lindstrom, B.; Pettersson, L.J.; Jaras, S.G. Hydrogen generation from methanol; In Catalysis, Spivey, J. J., Eds.; Cambridge, 2002, V16.
15. Geissler, K.; Newson, E.; Vogel, F.; Truong, T. B; Hottinger, P.; Wokaun, A. Phys. Chem. Chem. Phys. 2001, 3, 289.
16. Shen, J.-P.; Song, C. Catal. Today 2002, 77, 89.
17. Liu, S.; Takahashi, K.; Ayabe, M. Catal. Today 2003, 87, 247.
18. Jenkins, J. W.; Shutt, E. Platinum Metal Rev. 1989, 33, 118
19. Gottesfeld, S.; Pafford, J. J. Electrochem. Soc. 1988, 135, 2651.
20. Engel, T.; Ertl, G. Adv. Catal. 1979, 28, 1.
21. Gland, J. L.; Kollin, E. B. J. Chem. Phys. 1983, 78, 983
22. Ertl, G. Surf. Sci. 1994, 299, 742.
23. T. van Herwijnen; W. A. de Jone, J. Catal. 1980, 63, 83.
24. Salmi, T.; Hakkarainen, R. Appl. Catal. 1989, 49, 285.
25. Cao, Y.; Chen, Z.-X. Surf. Sci. 2006, 600, 4572.
26. Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem. Soc. 2008, 130, 1402
27. Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
28. Kandoi, S.; Gokhale, A. A.; Grabow, L. C.; Dumesic, J. A.; Mavrikakis, M. Catal. Lett. 2004, 93, 93. 110
29. Wang, G.-C.; Tao S.-X.; Bu, X.-H. J. Catal. 2006, 244, 10.
30. Phatak, A. A.; Delgass, W. N.; Ribeiro, F. H.; William, F. S. J. Phys. Chem. C 2009, 113, 7269.
31. Price, E. A.; Robertson, W. H.; Diken, E. G.; Weddle, G. H.; Johnson, M A. Chem. Phys. Lett. 2002, 366, 412.
32. Diken, E. G.; Headrick, J. M.; Roscioli, J. R.; Bopp, J. C.; Johnson, M. A.; McCoy, A. B. J. Phys. Chem. A 2005, 109, 1487.
33. Trimm, D.; Onsan, Z. Catal. Rev. 2001, 43, 39.
34. Peppley, B.; Amphlett, J.; Kearns, A.; Mann, R. Appl. Catal., 1999, 179, 21.
35. Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Mann, R. F. Appl. Catal. A 1999, 179, 31
36. Maack, M.; Henriette, F.; Sckerl, S.; Larsen, J.; Chorkendorff, I. Top. Catal. 2003, 22, 151.
37. Lindstrom, B.; Pettersson, L. J. Int. J. Hydrogen Energy 2001, 26, 923.
38. Huang, X.; Ma, L.; Wainwright, M. Appl. Catal. A. 2004, 257, 235.
39. Agarwal, V.; Patel, S.; Pant, K. K. Appl. Catal. A. 2005, 279, 155.
40. Utaka, T.; Okanishi, T.; Takeguchi, R.; Kikuchi, R.; Eguchi, K. Appl. Catal. A. 2003, 245, 343.
41. Twigg, M.; Spencer, M. Top. Catal. 2003, 22, 192.
42. Hughs, R. Deactivation of Catalysts; Academic Press (London), 1984.
43. Jacobs, G.; Davis, B. H. Appl. Catal., A. 2005, 285, 43.
44. Iwasa, N.; Masuda, S.; Ogawa, N.; Takezawa, N. Appl. Catal. A. 1995, 125, 145.
45. Iwasa, N.; Takezawa, N. Top. Catal. 2003, 22, 220.
46. Takezawa, N.; Iwasa, N. Catal. Today 1997, 36, 45.
47. Iwasa, N.; Tomoyuki, M.; Masuda, S.; Takezawa, N. React. Kinet. Catal. Lett. 2000, 69, 355.
48. Iwasa, N.; Mayanagi, T.; Wataru, N.; Arai, M.; Takewasa, T. Appl. Catal. A 2003, 248, 153.
49. Eccles, L. Electron. Des. 2001, 49, 27.
50. Gardner, K. 3rd Annual International Symposium on Small Fuel Cells and Battery Technologies for Portable Power Applications, Washington, DC, 2001.
51. Wattenbarger, J. F. Proceedings of the 1994 IEEE MILCOM. Part 1 of 3, Oct 25 1994, Long Branch, NJ, 1994; p 202.
52. Powerful Challenges: A view on the evolving state of powering technologies for soldier-borne equipment. Janes Strategic Advisory Services, 2004.
53. Bostic, E.; Sifer, N.; Bolton, C.; Ritter, U.; Dubois, T. J. Power Sources 2004, 137, 76.
54. Moore,J. M.; Adcock, P. L.; Lakeman, J. B.; Mepsted, G. O. J. Power Sources 111 2000, 85, 254
55. Wasmus, S.; Kuever, A. J. Electroanal. Chem. 1999, 461, 14.
56. Hogarth, M. In Fuel Cell Technology Handbook; Hoogers, G., Ed.; CRC Press: Boca Raton, FL, 2003.
57. Scott, K.; Taama, W. M.; Argyropoulos, P.; Sundmacher, K. J. Power Sources 1999, 83, 204.
58. Chin, Y.-H.; Dagle, R.; Hu, J.; Dohnalkova, A. C.; Wang, Y. Catal. Today 2002, 77, 79.
59. Chin, Y.-H.; Wang, Y.; Dagle, R. A.; Li, X.-S. Fuel Process. Technol. 2003, 83, 193.
60. Dagle, R.; Chin, Y.-H.; Wang, Y. Top. Catal., submitted.
61. Xia, G.; Holladay, J. D.; Dagle, R. A.; Jones, E. O.; Wang, Y. Chem. Eng. Technol. 2005, 28, 515.
62. Palo, D. R.; Holladay, J. D.; Dagle, R. A.; Chin, Y.-H. Symp. Ser. 2005, 914, 209.
63. Cao, C.; Xia, G.; Holladay, J.; Jones, E.; Wang, Y. Appl. Catal. A 2004, 262, 19.
64. Tsai, A.; Kameoka, S.; Ishii, Y. J. Phys. Soc. Jpn. 2004, 73, 3270
65. Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
66. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
67. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
68. Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898
69. Brillouin, L. Wave Propagation in Periodic Structures; Dover: New York, 1946
70. Lebowitz, J. L.; Lieb, E. H. Phys. Rev. Lett. 1969, 22, 631.
71. Bouckaert, L. P.; Smoluchowski, R.; Wigner, L. P. Phys. Rev. 1969, 50, 58.
72. Chadi, D. J. Phys. Rev. B 1977, 16, 1746.
73. Evarestov, R. A.; Smirnov, V. P. Phys. Stat. Sol. 1983, 119, 9.
74. Froyen, S. Phys. Rev. B 1989, 39, 3168.
75. Robertson, I. J.; Payne, M. C. J. Phys. Cond. Matt. 1990, 2, 9837.
76. Robertson, I. J.; Payne, M. C. J. Phys. Cond. Matt. 1991, 3, 8841.
77. Denteneer, P. J. H.; van Haeringer, W. J. Phys. Cond. Matt. 1985, 18, 4127.
78. Chadi, D. L.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
79. Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993
80. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
81. Hamann, D. R.; Schluter, M.; Chiang, C. Phys. Rev. Lett. 1979, 43, 1494.
82. Bachelet, G. B.; Hamann, D. R.; Schluter, M. Phys. Rev. B 1982, 26, 4199.
83. Kerker, G. J. Phys. C 1980, 13, 189.
112 84. Vanderbilt, D. Phys. Rev. B 1985, 32, 8412.
85. Troullier, N.; Martins, J. L. Solid State Comm. 1990, 74, 613.
86. Goedecker, S. ; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703.
87. Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641.
88. Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Phys. Rev. B 1990, 41, 1227.
89. Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
90. Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. Rev. B 1993, 47,10142.
91. Burke, P. K.; Ernzerhof , M. Phys. Rev. Lett. 1996, 77, 18.
92. Blochl, P. E. Phys. Rev. B 1994, 50, 17953.
93. Blochl, P. E. J. Phys. Chem. 1995, 99, 7422.
94. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
95. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
96. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. Phys. Rev. B 1992, 46, 6671.
97. Jonsson, H.; Mills, G.; Jacobsen, K. W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition, In Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World Scientific, 1998.
98. Mills, G.; Jonsson, H. Phys. Rev. Lett. 1994, 72, 1124.
99. Mills, G.; Jonsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
100. White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
101. Branger, V.; Pelosin, V.; Badawi, K. F.; Goudeau, P. Thin Solid Films 1996, 275, 22.
102. Structure data of Elements and Intermetallic phases, Springer, Berlin, 1977, Vol IIIb
103. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
104. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
105. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115.
106. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
107. Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.
108. Sawada, H.; Wang, R.; Sleight, A. W. J. Solid State Chem. 1996,122, 148.
109. Meyer B.; Marx, D. Phys. Rev. B 2003, 67, 035403.
110. Na, S.-H.; Park, C.-H. J. Korean Phy. Soc. 2010, 56, , 498.
111. Boettger, J. C. Phys. Rev. B 1994, 49, 23.
112. Iwasa, N. and Takezawa, N. Top. Catal. 2003, 22, 215.
113. Xiong, G.; Luo L.; Li C.; Yang, X. Energy & Fuels 2009, 23, 1342.
114. Kima, C.-H.; Leea, J. S.; Trimmb, D. L. Top. Catal. 2003, 22, 3.
115. Iwasa, N.; Mayanagi T.; Nomura W.; Arai M.; Takezawa N. Appl. Catal. A, 2003, 248, 153.
116. Grimelius, L.; Otsson, Y. Acta neuropath 1978, 41, 161.
117. Richardson, L.; Weaker, F. J.; Sheridan P. J. Biotech. Histochem. 1982, 57, 19.
118. Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B 2002, 106, 2559.
119. Mehmood, F.; Greeley, J.; Curtiss, L. A. J. Phys. Chem. C 2009, 113
120. Yudanov, I. V.; Matveev, A. V.; Neyman, K. M.; R sch N. J. Am. Chem. Soc. 2008, 130, 9342.
121. Jiang, R.; Guo W.; Li, M.; Fu, D.; Shan, H. J. Phys. Chem. C 2009, 113, 4188.
122. Mei, D.; Xu, L.; Henkelman, G. J. Phys. Chem. C 2009, 113, 4522.
123. Montoya, A.; Haynes, B. S. J. Phys. Chem. 2007, 111, 9867.
124. Koch, H. P.; Bako, I.; Schennach, R. Surf. Sci. 2010, 604, 596.
125. Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910.
126. Chen, Z.-X.; Neyman, K. M.; Lim, K. H.; R sch N. Langmuir 2004, 20, 8068.
127. Bessac, F.; Alary, F.; Poteau, R.; Heully, J.-L.; Daudey J.-P. J. Phys. Chem. A 2003, 107, 9393.
128. Nieuwenhuys, B. E. Surf. Sci. 1981, 105, 505.
129. Paolini, J. P. J. Comput. Chem. 1990, 11, 1160.
130. Rupprechter, G.; Morkel, M.; Freund, H.-J.; Hirschl, R. Surf. Sci. 2004, 554, 43.
131. Truflandier, L. A.; Rosal, I. D.; Chaudret, B.; Poteau, R.; Gerber I. C. ChemPhysChem 2009, 10, 2939
132. Kamakoti, P.; Sholl, D. S. J. Membr. Sci. 2003, 225, 145
133. Hao, X.; Shan, B.; Hyun, J.; Kapur, N.; Fujdala K.; Truex, T.; Cho, K. Top. Catal 2009, 52, 1946.
134. Zhang, J.; Jin, H.; Sullivan, M. B; Lim, F. C. H; Wu, P. Phys. Chem. Chem. Phys. 2008, 11, 1441.
135. Mei, D.; Hansen, E. W.; Neurock, M. J. Phys. Chem. B 2003, 107, 798.
136. Shao, M.-H.; Sasaki, K.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 3526
137. Camellone, M. F.; Fabris, S. J. Am. Chem. Soc. 2009, 191, 10473.
138. Yang, Z.; He, B.; Lu, Z.; Hermansson K. J. Phys. Chem. C 2010, 114, 4486.
139. Liu, D.-J. J. Phys. Chem. C 2007, 111, 14698.
140. Lee, H. M.; Kim, K. S. J. Chem. Theory Comput. 2009, 5, 976.
141. Barnett, R. N.; Landman, U. J. Phys. Chem. A 1997, 101, 164.
142. Gill, P. M. W.; Radom, L. J. Am. Chem. Soc. 1988, 110, 4931

QR CODE