簡易檢索 / 詳目顯示

研究生: 吳邦豪
Bang-hao Wu
論文名稱: 橋梁耐洪可靠度之初步評估
Reliability-based Bridge Preliminary Evaluation against Floods
指導教授: 廖國偉
Guo-wei Liao
口試委員: 邱建國
Jian-guo Qiu
宋裕祺
Yu-qi Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 143
中文關鍵詞: 貝氏網路可靠度分析粒子群優化演算法
外文關鍵詞: Bayesian Network, Relibility Analysis, Particle Swarm Optimization.
相關次數: 點閱:287下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

橋梁結構物為連結兩地、維持交通機能的重要輸送線,受到環境天候因素、本身劣化、外力如地震、洪水沖刷等因素的影響,局部構件亦或整體橋梁結構物之損傷為無可避免之現象,且近年來氣候異常,使得乾旱、地震與暴雨等自然災害發生的頻率逐漸增加。橋梁的檢修作業極具必要與急迫性,但國內跨河橋梁的數量高達兩萬多座,逐一進行詳盡的結構能力檢核與補強作業需要耗費龐大的成本及資源。目前以橋梁耐洪能力的領域,專家的初步評估是目前最為主流的基本檢測模式,兼具低成本且快速的優點,然而評估項目的配分與判斷標準卻相當主觀,評分結果會受限於專家經驗與肉眼所見,而跨河橋梁的耐洪能力具有高度的不確定因素,單就初步的評估難以體現橋梁真正的問題癥結點。
本文所提出的初步評估表,除了參考專家之意見外,亦進行一系列的學理分析,對現有的橋梁初步評估表內的配分進行調整,以貝氏網路所得到的失效機率與評估表所得之沖刷潛勢作為調整依據,搭配最佳化方法-粒子群優化演算法來搜尋出各個評分項目的最佳配分,使評估表的結果不僅更具客觀性,還能使之具有通用性,讓未來國內跨河橋梁耐洪能力的相關評估作業能更有說服力,同時也能提供更精確的評估結果供決策者做判斷。


Bridge is the one of the most important structures in daily life. Bridge safety is affected by many factors such as environmental conditions, deteriorated situation, and external forces (e.g., floods). Bridge safety has drawn much attention due to the increasing rate of natural hazard. However, it is not possible to perform a detailed evaluaton for each bridge in Taiwan. To reduce the cost, a preliminary inspection evaluation form (PIEF) is often used in Taiwan. The advantage of using PIEF is one can obtain the bridge condition within a very short time frame. However, the PIEF is usually generated by experts’ opinions and therefore, is relatively subjective. Because the bridge safety evaluation involves many uncertainties, reliability analysis was incorporated with the existing PIEF to provide a more promising approach.
The goal of research is to adjust the weights of the PIEF by analyzing several bridges with pile foundation. The weights were optimized such that the PIEF grade will have a close correlation with its corresponding failure probability. A reliability-based PIEF is therefore proposed to predict the bridge preliminary condition more accurate to assist the decision makers.

第一章 緒論 1.1研究背景 1.2研究動機與目的 1.3研究方法 1.4論文架構 第二章 文獻回顧 2-1 目前國內耐洪能力評估表簡介 2-2可靠度分析 2-3樁基礎分析 2-4貝氏定理 第三章 可靠度分析與貝氏網路架構最佳化 3.1軟體介紹 3.2數值分析模型建立 3.2.1數值分析模型自動化 3.2.2基本假設 3.2.3元素類型 3.2.4數值分析模型之土體設定 3.3可靠度分析方法 3-4 貝氏網路架構與驗證 3-5粒子群優化演算法 第四章 橋梁所處流域之簡介與實地勘察 5-1 蘭陽溪流域-蘭陽大橋 5-2 大甲溪流域-東勢大橋 5-3 烏溪流域-中彰大橋 4-4 急水溪流域-急水溪橋 4-5 那(艸)拔林溪流域-千鳥橋 4-6 朴子溪流域-朴子溪橋 4-7 高屏溪流域-雙園大橋與萬大大橋 第五章 研究結果與討論 5-1 簡易評估表的評估結果 5-2 最佳化評估表之配分 5-3 以貝氏定理更新最佳化配分值 第六章 結論與未來展望 文獻回顧

[1] 各大專院校土木建築系所,「莫拉克颱風之災情勘查與分析」,國家災害防救科技中心,2010。
[2] 交通部,「公路橋梁耐震設計規範」,2008。
[3] 內政部,「建築構基礎構造設計規範」,2001。
[4] 陳振川、蔡益超、張國鎮,「橋梁監測預警系統及沖刷保護措施及補強等策略之研究」,交通部公路總局研究報告,台北。
[5] 廖翊鈞、許長安、廖哲民,「橋墩劑沖刷計算模式建立研究」,跨河橋梁安全預警系統暨橋梁沖刷試驗室研討會論文集,2011。
[6] Almond, R.G., Dibello, L., Jenkins, F., Senturk, D., Mislevy, R.J., Steinberg, L.S., Yan, D. (2001). Models for Conditional Probability Tables in Educational Assessment. In T. Jaakkola & T.
[7] Abramson, B., and Finizza, A. Using belief networks to forecast oil prices. International Journal of Forecasting 7, 3 (November 1991), 299–315.
[8] Kevin B. Korb, Ann E. Nicholson. Bayesian Artificial Intelligence, A CRC Press Company, Boca Raton London New York Washington, D.C.
[9] Kevin P. Murphy, The Bayes Net Toolbox for Matlab, Department of Computer Science, University of California Berkeley.
[10] Brani Vidakovic, Bayesian Networks, Georgia Institute of Technology.
[11] Philippe Leray, Olivier Francois, BNT Structure Learning Package :Documentation and Experiments, June 14, 2006,
[12] D. B. Ashok and R. C. Tirupathi, “Optimization Concepts and Applications in Engineering”, prentice hall, 1999.
[13] 蔡益超、張荻薇、黃震興,「公路橋梁耐震設計規範之補充研究」,交通部臺灣區國道新建工務局,1997。
[14] J. P. Wang, X. Yun and Y.-M. Wu, A first-order second-moment calculation for seismic hazardassessment with the consideration of uncertain magnitudeconversion, Nat. Hazards Earth Syst. Sci., 13, 2649–2657, 2013.
[15] 陳豐文、林修德、陳宗益、藍士程、蔡翰陞,「應用HEC-RAS 一維水理模式評估渠首工構造物之淹水潛勢-以臺中水系灌區為例」,2012 年中華水土保持學會年會及學術研討會論文集。
[16] 劉正川、李彥樺,「不同時期之開發度對汲水逕流模擬之研究」,中華土木保持學報,37期,125-142,2006。
[17] J. Kennedy and R. C. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948,1995.
[18] R. C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:Proc. IEEE Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43,1995.
[19] 水利署,台灣河川復育網,http://trrn.wra.gov.tw/trrn/index.do
[20] 水利署,地理倉儲系統中心,http://gic.wra.gov.tw/gic/HomePage/Index.aspx
[21] 經濟部水利署第一河川局,蘭陽溪變遷調查及治理對策研析,民國102年12月。
[22] 王仲宇、廖國偉、陳瑞華、呂胡忠,跨河橋梁耐洪能力可靠度分析,財團法人中華顧問工程司。
[23] 經濟部水利署水利規劃試驗所,大甲溪流域整體治理規劃檢討,2011。
[24] 經濟部水利署中區水資源局,大甲溪八寶攔河堰工程計畫檢討,2009。
[25] 經濟部水利署水利規劃試驗所,大甲溪石岡壩下游河段河床穩定方案之研究,2011。
[26] 經濟部水利署水利規劃試驗所,烏溪河系河川情勢調查(1/2) (第一年) ,2005。
[27] 經濟部水利署第五河川局,102年度五河局轄區洪水預警及防汛整合作業。
[28] 經濟部水利署第五河川局,朴子溪下雙溪堤段提線檢討,2011。
[29] 經濟部水利署第七河川局 (2010),高屏溪流域整體治理規劃報告。
[30] 傅紹倫,「牛鬥橋沉箱基礎側向荷載試驗之模擬分析」,指導教授 陳正興,台灣大學土木工程學研究所。

QR CODE