簡易檢索 / 詳目顯示

研究生: 宋孟璇
Meng-Hsuan Sung
論文名稱: 在間歇連結移動網路中提供接收保證的感染式路由的效能分析
Performance Analysis of Epidemic Routing with Reception Guarantees in Intermittently Connected Mobile Networks
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 曾志成
Chih-Cheng Tseng
鄧德雋
Der-Jiunn Deng
鄭瑞光
Ray-Guang Cheng
林春成
Chun-Cheng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 緩衝佔用量接收保證感染式路由間歇連結移動網路
外文關鍵詞: buffer occupancy, reception guarantees, epidemic routing, intermittently connected mobile networks
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 間歇連結移動網路(ICMNs)是一種無線網路傳輸方式,不需要任何實體的基礎建設或者是集中管理,在ICMNs中的節點就可以互相溝通。然而,由於在ICMNs中的節點會一直移動,一旦兩個溝通中的節點離開彼此的傳輸範圍,連線就會中斷。因此在ICMNs中傳遞封包時,常會因為找不到一個完整的路徑或者是傳到一半路徑中斷了而導致封包無法被接收。當網路環境無法提供接收端無法有一定的機率接收封包時,我們稱這個網路無法提供接收保證(reception guarantees),而這是ICMNs中的一大挑戰。為了使ICMNs可以提供接收保證,我們使用感染式路由(epidemic routing)作為傳輸封包的方法。感染式路由是基於「儲存與轉發 (store-and-forward)」的特性傳遞封包,因此在提供接收保證的同時,感染式路由也造成大量的緩衝佔用量(buffer occupancy)。因此,降低緩衝佔用量是在ICMNs中使用感染式路由的另外一個挑戰。 在這篇論文中,我們分別針對兩種不同感染式路由的方式進行研究,期望在提供接收保證下分析其效能並降低緩衝佔用量。第一種是全域計時方式(global timeout scheme),藉由我們發展的數學式,我們可以在指定的接收保證下獲得最佳的全域計時數值及對應的緩衝佔用量。另一種方法是反向封包方式(antipacket dissemination scheme),反向封包方式可以提供良好的接收保證,而緩衝佔用量可以藉由控制節點是否參與傳遞反向封包而降低。透過我們的研究,可以設計一個良好的感染式路由,以在ICMNs的環境中提供接收保證下,分析並降低緩衝佔用量。


    Intermittently connected mobile networks is a type of wireless networks. Nodes in ICMNs can communicate with each other directly without infrastructure and centralized management. Nodes in ICMNs may move to another place with the time goes by, however, once a node is out of connected node's transmission range, the connection between both nodes is interrupt. Therefore, the packet may lose when it is delivered due to the path is changed or interrupt at any time, and we call this network is without reception guarantees since we can't insure whether the destination receive the packet or not. In our work, we use packet loss rate as an indicator of reception guarantees due to packet loss rate can help us to evaluate whether a packet lost or not in a ICMN. Although reception guarantees are big problem in ICMNs, we use epidemic routing as a solution due to its store-and-forward nature. However, in the mean time, epidemic routing also causes excessive buffer occupancy because each nodes received packet store it in their buffer. Therefore, reducing buffer occupancy is another challenge of epidemic routing in ICMNs. Consequently, in our work, we mainly focus on how to design a epidemic routing in ICMNs using less buffer occupancy and with reception guarantees. We analyze and control the performance of two epidemic routing schemes respectively. The first one, in global timeout scheme, we evaluate an equation for obtaining optimal global timeout value with a designed packet loss rate to tradeoff the buffer occupancy and packet loss rate in global timeout scheme. In antipacket dissemination scheme, the buffer occupancy reduces by controlling the participation of relay nodes in transmitting antipacket. Through our work, we can well design a epidemic routing with less buffer occupancy and providing reception guarantees in ICMNs.

    Abstract in Chinese .................................. iii Abstract in English .................................. iv Contents........................................ v List of Figures..................................... vii 1 Introduction.................................... 1 2 Background and RelatedWork .......................... 4 2.1 Epidemic routing .............................. 4 2.2 Main Issues of Epidemic Routing in ICMNs . . . . . . . . . . . . . . . . 6 2.3 Two schemes for handling copies...................... 7 3 System Model................................... 10 3.1 Notation................................... 10 3.2 Network Model............................... 11 3.3 Mobility Model............................... 11 3.4 Immunity Schemes ............................. 12 3.5 Performance Metrics ............................ 14 4 Mathematical analysis............................... 15 4.1 Formulation................................. 15 4.1.1 SIR model ............................. 15 4.1.2 Fluid Analysis of SIR model.................... 15 4.1.3 Data Delivery Probability Function and Buffer Occupancy . . . . 16 4.2 Buffer Occupancy and Delivery Reliability Tradeoffs . . . . . . . . . . . 17 4.2.1 Global Timeout Scheme ...................... 18 4.2.2 Antipacket Dissemination Scheme................. 19 5 Numerical Results................................. 22 5.1 Global Timeout Scheme .......................... 22 5.1.1 Relationship between optimal global timer Tg∗ and maximum packet loss rate ε.............................. 23 5.1.2 Tradeoff between maximum packet loss rate ε and buffer occupancyB............................... 26 5.1.3 Comparisons of Different Mobility Models . . . . . . . . . . . . 27 5.2 Antipacket Dissemination Scheme ..................... 28 5.2.1 Relationship between buffer occupancy B and delay T_D. . . . . . 29 5.2.2 Antipacket Forwarding Probability. . . . . . . . . . . . . . . . . 31 5.2.3 Comparisons of Different Mobility Models . . . . . . . . . . . . 32 6 Conclusion..................................... 37 References....................................... 38

    [1] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad hoc networks,” Tech. Rep. CS-2000-06, Duke Univ., July 2000.
    [2] Z.Zhang,“Routinginintermittentlyconnectedmobileadhocnetworksanddelaytolerantnetworks: overview and challenges,” IEEE Commun. Surveys Tuts., vol. 8, no. 1, pp. 24–37, 2006.
    [3] M. Khabbaz, C. Assi, and W. Fawaz, “Disruption-tolerant networking: A comprehensive survey on recent developments and persisting challenges,” IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 607– 640, 2012.
    [4] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges,” IEEE Commun. Surveys Tuts., vol. 15, pp. 654–677, May 2013.
    [5] Z. J. Haas and T. Small, “A new networking model for biological applications of ad hoc sensor net- works,” IEEE/ACM Trans. Netw., vol. 14, pp. 27–40, Feb. 2006.
    [6] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An epidemic model for information diffusion in MANETs,” in ACM MSWiM, pp. 54–60, 2002.
    [7] P.-Y.Chen and K.-C.Chen,“Information epidemics in complex networks with opportunistic links and dynamic topology,” in Proc. IEEE GLOBECOM ’10, pp. 1–6, Dec. 2010.
    [8] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev., vol. 42, pp. 599–653, Dec. 2000.
    [9] D. J. Daley and J. Gani, Epidemic Modeling: An Introduction. Cambridge University Press, 2001.
    [10] C. Boldrini, M. Conti, and A. Passarella, “The stability region of the delay in Pareto opportunistic
    networks,” IEEE Trans. Mobile Comput., vol. 14, pp. 180–193, Jan. 2015.
    [11] X. Guan, M. Chen, and T. Ohtsuki, “Epidemic theory based h + 1 hop forwarding for intermittently
    connected mobile ad hoc networks,” in Proc. IEEE ICC ’12, pp. 2114–2118, Jun. 2012.
    [12] A. Clementi, F. Pasquale, and R. Silvestri, “Opportunistic MANETs: Mobility can make up for low
    transmission power,” IEEE/ACM Trans. Netw., vol. 21, pp. 610–620, Apr. 2013.
    [13] L. Becchetti, A. Clementi, F. Pasquale, G. Resta, P. Santi, and R. Silvestri, “Flooding time in opportunistic networks under power law and exponential intercontact times,” IEEE Trans. Parallel Distrib. Syst., vol. 25, pp. 2297–2306, Sept. 2014.
    [14] Y.Kim,K.Lee,N.B.Shroff,andI.Rhee,“Providing probabilistic guarantees on the time of information spread in opportunistic networks,” in Proc. IEEE INFOCOM ’13, pp. 2067–2075, Apr. 2013.
    [15] S. Venkatramanan and A. Kumar, “Co-evolution of content spread and popularity in mobile opportunistic networks,” IEEE Trans. Mobile Comput., vol. 13, pp. 2498–2509, Nov. 2014.
    [16] E. Altman, A. P. Azad, T. Başar, and F. De Pellegrini, “Combined optimal control of activation and transmission in delay-tolerant networks,” IEEE/ACM Trans. Netw., vol. 21, pp. 482–494, Apr. 2013.
    [17] A. Socievole, F. De Rango, and C. Coscarella, “Routing approaches and performance evaluation in delay tolerant networks,” in Proc. IEEE WTS ’11, pp. 1–6, Apr. 2011.
    [18] S. Eshghi, M. Khouzani, S. Sarkar, and S. Venkatesh, “Optimal patching in clustered malware epidemics,” IEEE/ACM Trans. Netw., accepted for publication, 2014.
    [19] J.Liu, H.Nishiyama, andN.Kata,“Performance modeling of three-hop relay routing in intermittently connected mobile networks,” in Proc. IEEE WCNC ’13, pp. 2108–2112, Apr. 2013.
    [20] R. Subramanian and F. Fekri, “Queueing models for the performance of multihop routing in a intermittently-connected mobile network,” in Proc. IEEE ICC ’12, pp. 487–491, Jun. 2012.
    [21] V.Preciado, M.Zargham, C.Enyioha, A.Jadbabaie, and G.Pappas,“Optimal resource allocation for network protection against spreading processes,” IEEE Trans. Control of Network Systems, vol. 1, pp. 99–108, Mar. 2014.
    [22] Y. Jeong, S.-H. Kim, and S. jae Han, “Link configuration and message forwarding for intermittently connected mobile networks,” in Proc. IEEE SECON ’12, pp. 51–53, Jun. 2012.
    [23] P.-Y.Chen and K.-C.Chen,“Optimal control of epidemic information dissemination in mobile ad hoc networks,” in Proc. IEEE GLOBECOM ’11, pp. 1–5, Dec. 2011.
    [24] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Optimal control of epidemic information dissemination over networks,” IEEE Trans. on Cybern., vol. 44, pp. 2316–2328, Dec. 2014.
    [25] C. Singh, E. Altman, A. Kumar, and R. Sundaresan, “Optimal forwarding in delay-tolerant networks with multiple destinations,” IEEE/ACM Trans. Netw., vol. 21, pp. 1812–1826, Dec. 2013.
    [26] C.S.DeAbreu and R.M.Salles,“Modeling message diffusion in epidemical DTN,”AdHocNetworks, vol. 16, pp. 197–209, Jan. 2014.
    [27] T.SmallandZ.J.Haas,“The shared wireless infostation model: a new ad hoc networking paradigm,” in ACM MobiHoc, pp. 233–244, 2003.
    [28] X.Zhang,G.Negli,J.Kurose, and D.Towsley, “Performance modeling of epidemic routing,”Comput. Netw., vol. 51, pp. 2867–2891, July 2007.
    [29] R.Groenevelt,P.Nain,andG.Koole,“The message delay in mobile ad hoc networks,”Perform.Eval., vol. 62, pp. 210–228, Oct. 2005.

    無法下載圖示 全文公開日期 2020/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE