簡易檢索 / 詳目顯示

研究生: 張大衛
Dave - W.T. Mangindaan
論文名稱: 利用電漿技術製備水溼性以及化學官能基梯度表面
The creation of wettability and functionality surface gradients by plasma techniques
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 劉懷勝
Hwai-Shen Liu
陳克紹
Ko-Shao Chen
陳貞夙
Jen-Sue Chen
魏大欽
Ta-Chin Wei
朱義旭
Yi-Hsu Ju
李嘉平
Chia-Pyng Lee
林析右
Shi-Yow Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 94
中文關鍵詞: 電漿處哩電漿聚合水濕性梯度官能基梯度擴散質傳模擬
外文關鍵詞: Plasma treatment, plasma polymerization, wettability gradient, functionality gradient, diffusion, mass transfer, modeling
相關次數: 點閱:400下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用電漿技術,包括電漿處理以及電漿聚合等方法,成功製備水濕性梯度以及官能基梯度。其中,水濕性梯度的製備,是利用特殊的遮罩,並先以氧氣電漿進行前處理,再用六氟化硫電漿處理,將水濕性梯度製備於聚丙烯表面上,其水接觸角涵蓋20度至135度之廣泛範圍。利用電漿聚合allylamine製備化學官能基梯度的結果,則是可控制胺基的密度於聚丙烯表面,使呈連續改變,其中氮原子成分由5.8%改變為16 %。利用化學分析電子儀分析六氟化硫電漿於水濕性梯度的作用,主要於聚丙烯表面引入碳-氟鍵結導致表面的疏水性質,疏水性質的逐漸改變導致水濕性梯度的產生。另一方面,於聚丙烯表面碳-氮鍵結的形成、以及其濃度之改變,則是形成化學官能基梯度的主要原因。
本論文中特別對於電漿所激發的反應物種於遮罩中的擴散,以導致梯度之形成進行數學模擬分析。其中,對於六氟化硫電漿與激發後的allylamine,進行質量傳遞係數之比較,發現氣體與聚合單體所存在之物理狀態,與其質量傳遞係數有密切之相關性。同時,利用數學模擬計算所獲得的質量傳遞係數,可有效應用於製備同樣範圍的水濕性梯度於不同長度的樣本之上,本論文即利用相同的質量傳遞係數,製備相同的水濕性梯度於1、5以及7公分的樣本上,利用實驗驗證數學模擬的結果,成功放大製程。
本論文所製備的胺基梯度,提供有效驗證細胞與材料表面交互作用的平台。實驗結果證實L-929纖維母細胞於胺基梯度的兩端呈現非常不同的表現:於胺基密度較高的一端,L-929纖維母細胞呈現高度的延展性,同時數目也較胺基密度較低的一端高出兩倍以上;而在胺基密度較低的一端,細胞呈現圓形,顯示細胞不易附著以及延展。因此,所製備的官能基梯度提供了一種能夠迅速檢測生物分子於材料表面表現的檢測方法,可應用於發展新型生物材料。
另一方面,本論文利用電漿聚合方法,比較聚和三種分子量與結構相近、但具不同飽和度的單體之聚合速率,發現含未飽和鍵結的單體(allylamine以及 propargylamine),利用電漿聚合時的沉積速率,分別超過飽和單體(propylamine) 沉積速率的兩倍以及三倍。探討單體結構於沉積速率的影響,發現其中以胺基游離能(amine bond dissociation energy, NH2 BDE)對於沉積速率的影響為最重要。另外,沉積薄膜中以allylamine單體能夠提供最高密度的胺基成分,此結果可由化學的分析(利用化學分析電子儀)、材料表面的粗糙度(利用原子力顯微鏡分析)、以及生物分子的表現(纖維母細胞於胺基密度較高的表面生長密度較高)同時驗證。


Gradients of wettability and amine functionality were successfully created by diffusion-controlled plasma treatment and plasma polymerization, respectively. The wettability gradient with very wide range of water contact angle (from 20 to 135°) was fabricated on polypropylene membrane by applying O2 plasma pretreatment followed by masked SF6 plasma treatment. The chemical gradient possessing continuous gradual change of amine functional groups (nitrogen content 5.8 to 16 %) was prepared in this study by applying masked allylamine plasma polymerization on polypropylene membrane. ESCA analysis revealed that the SF6 plasma incorporated C-F bonds onto the polypropylene surface as the factor responsible to the surface hydrophobicity and the formation of the gradient. On the other hand, C-N bonding was demonstrated to be highly dependent on the distance of the allylamine plasma polymer gradient.
The role of mass transfer of the reactive species during the diffusion-controlled SF6 plasma treatment and allylamine plasma polymerization, leading to the formation of gradient, was detailed in mathematical expressions. By mathematical modeling, mass transfer coefficients for the two plasma processes were successfully calculated. With the advent of mass transfer modeling, the scaling-up process of wettability gradient from 1 cm to be 5 and 7 cm was achieved, and enabled the quantitative comparison on gradients from different precursors. It was theoretically proposed that precursor’s phase and energy input from plasma play significant role in the gradient creation from plasma techniques.
The wide-range wettability gradient and the amine-functionalized gradient demonstrated the capability as effective tools for the study of cell-surface interaction as demonstrated by the cultivation of L-929 fibroblast cells on the gradients. These gradients are also very promising for versatile developments by tethering different surface functionalities by the substrate-independent plasma techniques, as accompanied with high degree of control over fabrication parameters, resulting in numerous possibilities for inventing novel materials.
Inspired by the remarkable potential shown by allylamine plasma polymer gradient, other amine-containing plasma polymers with different saturation degree were successfully prepared. Thin films prepared from amine-functionalized saturated (propylamine) and unsaturated (allylamine and propargylamine) precursors were investigated in terms of the deposition rate, polymerization kinetics and surface morphology. The deposition rate increased as a function of the applied power while the surface roughness remained constant for higher applied power. Moreover, a mathematical model was established to discuss the physicochemical parameters including kinetics and roughness. It was found that amine bond dissociation energy (NH2 BDE) dictated the deposition kinetics and morphology for thin film derived from the analogous monomers. On the other hand, surface chemistry (N/C ratio and imine content) ruled the growth of L-929 fibroblast cells on the prepared amine-containing surfaces. The results assisted to explain quantitatively the relationships among the deposition kinetics of plasma polymerization, the physicochemical and biological responses on the amine plasma polymers.

Abstract i Acknowledgement iii Contents iv List of figures vi List of tables ix Abbreviations x Chapter 1. Introduction 1 Chapter 2. Literature Study 4 2.1 Surface functionality 4 2.2 Plasma polymerization and modifications for amine functionalization 4 2.3 Surface chemical gradients 5 2.3.1 Gradients by surface coating method 5 2.3.2 Gradient by plasma techniques 9 2.3.2.1 Plasma treatment method for creating gradients 10 2.3.2.2 Plasma polymerization method for creating gradients 12 2.3.2.3 Two-dimensional gradients 15 2.4 Plasma deposition kinetics 15 Chapter 3. Experimental 19 3.1 Chemicals 19 3.1.1 Substrates 19 3.1.2 Precursors for plasma polymerization 19 3.1.3 Plasma gases 19 3.1.4 Cell culture 19 3.1.5 LDH (lactate dehydrogenase) assay 20 3.2 Equipments and instruments 20 3.3 Experimental Procedure 21 3.3.1 Plasma polymerizations 21 3.3.1.1 Preparation of amine-containing thin films 21 3.3.1.2 The production of allylamine plasma polymerized gradient 22 3.3.2 Fabrication of wettability gradient by using SF6 plasma 23 3.3.2.1 Oxygen plasma pretreatment 24 3.3.2.2 SF6 plasma treatment 24 3.4 Surface characterizations 24 3.4.1 Water contact angle (WCA) 24 3.4.2 Fourier-transformed infrared spectrometry (FTIR) 25 3.4.3 Atomic force microscope (AFM) 25 3.4.4 Quartz crystal microbalance (QCM) 25 3.4.5 Scanning electron microscope (SEM) 25 3.4.6 Electron spectroscopy for chemical analysis (ESCA) 25 3.4.6.1 ESCA analyses for plasma polymerized thin films by using precursors of propylamine, allylamine and propargylamine 25 3.4.6.2 ESCA of wettability gradient fabricated by SF6 plasma 26 3.5 Cell culture 26 3.5.1 Preparation of cell culture medium 26 3.5.2 L-929 fibroblast cell culture 26 3.5.3 Cell preparation for SEM imaging 27 3.5.4 Cell density measurement 27 3.5.4.1 LDH (lactate dehydrogenase) assay 27 3.5.4.2 Cell counting by SEM 27 3.6 Statistical analysis 28 Chapter 4. Results and Discussion 29 4.1 Plasma polymerization of amine-containing thin films: The studies of deposition kinetics, thin film morphology, and physicochemical modeling 29 4.1.1 The deposition of the amine-containing thin films 29 4.1.2 Identification of amine functionalities by FTIR 30 4.1.3 Surface chemistry elucidated from ESCA 32 4.1.4 Surface roughness of plasma polymerized amine thin films 34 4.1.5 L-929 fibroblast cells responses on amine-containing plasma polymers 36 4.1.6 Mathematical models 37 4.1.6.1 Kinetic analyses for the plasma polymerization of amine monomers 37 4.1.6.2 The model for surface roughness 39 4.1.6.3 Molecular-influenced kinetics and roughness 40 4.1.7 Cell response induced by surface chemistry of amines plasma polymers 42 4.2 Multifunctional gradients created from plasma techniques 44 4.2.1 Fabrication of chemical gradient by allylamine plasma polymerization 44 4.2.1.1 Water contact angle of plasma polymerized allylamine gradient 44 4.2.1.2 Surface chemistry of PPA gradient 45 4.2.1.3 Cell-surface interactions on PPA gradient 48 4.2.1.4 Relationship between surface chemistry and biological cell responses on the PPA gradient 49 4.2.2 Wettability gradient by SF6 plasma treatment 51 4.2.2.1 Oxygen plasma pretreatment on polypropylene substrate 51 4.2.2.2 The characterizations of wettability gradient by ESCA 53 4.2.2.3 The morphology of L-929 fibroblasts cells on the created wettability gradient 58 4.2.2.4 Efficacy of the fabricated wettability gradient 59 4.2.2.5 Interaction between plasma and polymeric surface 61 4.3 Mathematical modeling of gradient fabricated by plasma techniques 62 4.3.1 General equation for the mass-transfer for gradient fabrication 62 4.3.2 Correlations for interactions between plasma and materials 65 4.3.3 The scale up of wettability gradient 69 4.3.4 Surface coverage and modeling of allylamine plasma polymer gradient 71 4.4 Two-dimensional gradient of allylamine plasma polymer 75 4.4.1 Water contact angle of 2D allylamine plasma polymer gradient 75 4.4.2 The modeling of the 2D gradient 77 Chapter 5. Conclusion 80 References 82 Appendix 86 Curriculum Vitae 94

[1] I. Gancarz, G. Pozniak, M. Bryjak, W. Tylus, Eur. Polym. J. 2002, 38, 1937.
[2] G. Pozniak, I. Gancarz, M. Bryjak, W. Tylus, Desalination 2002, 146, 293.
[3] A. Hiratsuka, H. Muguruma, S. Sasaki, K. Ikebukuro, I. Karube, Electroanalysis 1999, 11, 1098
[4] A. Denizli, B. Salih, E. Piskin, J. Chromatogr. A 1997, 773, 169.
[5] R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, H. Pedersen, Anal. Chem. 1997, 69, 4649.
[6] K. Nakanishi, H. Muguruma, I. Karube, Anal. Chem. 1996, 68, 1695.
[7] L. Dai, H. A. W. St.John, P. Z. Jingjing Bi, R. C. Chatelier, H. J. Griesser, Surf. Interface Anal. 2000, 29, 46.
[8] F. Truica-Marasescu, M. R. Wertheimer, Plasma Process. Polym. 2008, 5, 44.
[9] T. Ramanathan, F. T. Fischer, R. S. Ruoff, Chem. Mater. 2005, 17, 1290.
[10] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T. W. Hanks, A. M. Rao, Y. Sun, Nano Lett. 2002, 2, 311.
[11] J. L. Baher, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, J. Am. Chem. Soc. 2001, 123, 6536.
[12] K. Jiang, L. S. Schadler, R. W. Siegel, X. Zhang, H. Zhang, M. Terrones, J. Mater. Chem. 2004, 14, 37.
[13] S. C. Tsang, Z. G. Guo, Y. K. Chen, M. L. H. Green, H. A. O. Hill, T. W. Hambley, P. J. Saddler, Angew. Chem. Int. Ed. 1997, 36, 2198.
[14] N. Inagaki, Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc., Basel, Switzerland, 1996.
[15] H. Biederman, I. H. Boyaci, P. Bilkova, D. Slavinska, S. Mutlu, J. Zemek, M. Trchova, J. Klimovic, M. Mutlu, J. Appl. Polym. Sci. 2001, 81, 1341
[16] D. Cokeliler, M. Mutlu, Anal. Chim. Acta 2002, 469, 217.
[17] J. Kim, H. Park, D. Jung, S. Kim, Anal. Biochem. 2003, 313, 41.
[18] P. G. Hartley, S. L. McArthur, K. M. McLean, H. J. Griesser, Langmuir 2002, 18, 2483.
[19] K. Vasilev, L. Britcher, A. Casanal, H. J. Griesser, J. Phys. Chem. B 2008, 112, 10915.
[20] X. Gong, L. Dai, A. W. H. Mau, H. J. Griesser, J. Polym. Sci. Pol. Chem. 1998, 36, 633.
[21] J. Wang, K. G. Neoh, L. Zhao, E. T. Kang, J. Colloid Interface Sci. 2002, 251, 214.
[22] B. Lassen, M. Malmsten, J. Colloid Interface Sci. 1997, 186, 9.
[23] N. L. Burns, J. Colloid Interface Sci. 1996, 183, 249.
[24] A. Hiratsuka, H. Muguruma, R. Nagata, R. Nakamura, K. Sato, S. Uchiyama, I. Karube, J. Membr. Sci. 2000, 175, 25.
[25] A. E. Lefohn, N. M. Mackie, E. R. Fisher, Plasmas Polym. 1998, 3, 197.
[26] I. Gancarz, J. Bryjak, G. Pozniak, W. Tylus, Eur. Polym. J. 2003, 39, 2217.
[27] A. Choukourov, H. Biederman, D. Slavinska, L. Hanley, A. Grinevich, H. Boldyryeva, A. Mackova, J. Phys. Chem. B 2005, 109, 23086
[28] K. S. Siow, L. Britcher, S. Kumar, H. J. Griesser, Plasma Process. Polym. 2006, 3, 392.
[29] A. L. Hook, H. Thissen, J. Quinton, N. H. Voelcker, Surf. Sci. 2008, 602, 1883.
[30] W. Besch, R. Foest, K. Schröder, A. Ohl, Plasma Process. Polym. 2008, 5, 105.
[31] A. Tarasova, P. Hamilton-Brown, T. Gengenbach, H. J. Griesser, L. Meagher, Plasma Process. Polym. 2008, 5, 175.
[32] M. Zelzer, M. R. Alexander, J. Phys. Chem. B 2010, 114, 569.
[33] G. Mishra, C. D. Easton, S. L. McArthur, Langmuir 2010, 26, 3720.
[34] G. J. S. Fowler, G. Mishra, C. D. Easton, S. L. McArthur, Polymer 2009, 50, 5076.
[35] Z. Yang, J. Wang, R. Luo, M. F. Maitz, F. Jing, H. Sun, N. Huang, Biomaterials 2010, 31, 2072.
[36] P. Hamerli, T. Weigel, T. Groth, D. Paul, Biomaterials 2003, 24, 3989.
[37] M. Tatoulian, F. Bretagnol, F. Arefi-Khonsari, J. Amouroux, O. Bouloussa, F. Rondelez, A. J. Paul, R. Mitchell, Plasma Process. Polym. 2005, 2, 38.
[38] Z. Yang, X. Wang, J. Wang, Y. Yao, H. Sun, N. Huang, Plasma Process. Polym. 2009, 6, 498.
[39] H. Yatsuda, M. Nara, T. Kogai, H. Aizawa, S. Kurosawa, Thin Solid Films 2007, 515, 4105.
[40] F. Fally, C. Doneux, J. Riga, J. J. Verbist, J. Appl. Polym. Sci. 1995, 56, 597
[41] A. G. Shard, J. D. Whittle, A. J. Beck, P. N. Brookes, N. A. Bullet, R. A. Talib, A. Mistry, D. Barton, S. L. McArthur, J. Phys. Chem. B 2004, 108, 12472.
[42] G. W. Collins, S. A. Letts, E. M. Fearon, R. L. McEachern, T. P. Bernat, Phys. Rev. Lett 1994, 73.
[43] R. M. Oksuzoglu, A. Elmali, T. E. Weirich, H. Fuess, H. Hahn, J. Phys.-Condes. Matter 2000, 12.
[44] G. Palasantzas, D. Tsamouras, J. T. M. D. Hosson, Surf. Sci. 2002, 507–510.
[45] J. Genzer, R. R. Bhat, Langmuir 2008, 24, 2294.
[46] M. S. Kim, G. Khang, H. B. Lee, Prog. Polym. Sci 2008, 33, 138.
[47] S. B. Carter, Nature 1965, 208, 1183
[48] S. B. Carter, Nature 1967, 213, 256
[49] M. Zelzer, R. Majani, J. W. Bradley, F. R. A. J. Rose, M. C. Davies, M. R. Alexander, Biomaterials 2008, 29, 172.
[50] S. Morgenthaler, C. Zink, N. D. Spencer, Soft Matter 2008, 4, 419.
[51] J. D. Whittle, D. Barton, M. R. Alexander, R. D. Short, Chem. Commun. 2003, 1766.
[52] M. R. Alexander, J. D. Whittle, D. Barton, R. D. Short, J. Mater. Chem. 2004, 14, 408.
[53] R. A. Walker, V. T. Cunliffe, J. D. Whittle, D. A. Steele, R. D. Short, Langmuir 2009, 25, 4243.
[54] N. Wells, M. A. Baxter, J. E. Turnbull, P. Murray, D. Edgar, K. L. Parry, D. A. Steele, R. D. Short, Biomaterials 2009, 30, 1066.
[55] M. Zelzer, D. Scurr, B. Abdullah, A. J. Urquhart, N. Gadegaard, J. W. Bradley, M. R. Alexander, J. Phys. Chem. B 2009, 113, 8487.
[56] D. Mangindaan, W.-H. Kuo, Y.-L. Wang, M.-J. Wang, Plasma Process. Polym. 2010, 7, 754.
[57] M. Bryjak, I. Gancarz, G. Pozniak, Langmuir 1999, 15, 6400.
[58] J.-N. Xiang, Z. Cao, X. Yin, K.-M. Wang, H.-G. Lin, R.-Q. Yu, Anal. Chim. Acta 1999, 384, 37.
[59] J. H. Lee, J. W. Lee, G. Khang, H. B. Lee, Biomaterials 1997, 18, 351.
[60] Y. Iwasaki, K. Ishihara, N. Nakabayashi, G. Khang, J. H. Jeon, J. W. Lee, H. B. Lee, J. Biomater. Sci.-Polym. Ed. 1998, 9, 801.
[61] J. H. Lee, S. J. Lee, G. Khang, H. B. Lee, J. Colloid Interface Sci. 2000, 230, 84.
[62] M. K. Chaudhury, S. Daniel, M. E. Callow, J. A. Callow, J. A. Finlay, Biointerphases 2006, 1, 18.
[63] J. C. Meredith, J.-L. Sormana, B. G. Keselowsky, A. J. Garcia, A. Tona, A. Karim, E. J. Amis, J. Biomed. Mater. Res. 2003, 66, 483.
[64] W. Kern, J. Electrochem. Soc. 1990, 137, 1887.
[65] B. Balu, V. Breedveld, D. W. Hess, Langmuir 2008, 24, 4785.
[66] G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, John Wiley & Sons, Baffins Lane, Chichester, England, 1992.
[67] A. G. Karakecili, T. T. Demirtas, C. Satriano, M. Gümüsderelioglu, G. Marletta, J. Biosci. Bioeng. 2007, 104, 69.
[68] W.-B. Tsai, Q. Shi, J. M. Grunkemeier, C. Mcfarland, T. A. Horbett, J. Biomater. Sci.-Polym. Ed. 2004, 7, 817.
[69] A. R. Denaro, P. A. Owens, A. Crawshaw, Eur. Polym. J. 1968, 4, 93.
[70] A. R. Denaro, P. A. Owens, A. Crawshaw, Eur. Polym. J. 1969, 5, 471.
[71] J. M. Grace, L. J. Gerenser, J. Dispersion Sci. Technol. 2003, 24, 305.
[72] L. J. Gerenser, J. Adhes. Sci. Tech 1987, 1, 303.
[73] A. R. Denaro, P. A. Owens, A. Crawshaw, Eur. Polym. J. 1970, 6, 487.
[74] S. Lagergren, Handlingar 1898, 24, 1.
[75] J. Febrianto, A. N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, J. Hazard. Mater 2009, 162, 616.
[76] K. Kuchitsu, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Vol. II/25C, Springer-Verlag, Berlin, Heidelberg, Germany., 2000.
[77] Y. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, Florida, USA, 2003.
[78] Y. Ma, W. Guo, L. Zhao, S. Hu, J. Zhang, Q. Fu, X. Chen, J. Phys. Chem. A 2007, 111, 6208.
[79] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, USA, 2005.
[80] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 2001.
[81] J. L. Holmes, F. P. Lossing, P. M. Mayer, Chem. Phys. Lett. 1992, 198, 211.
[82] M. Wahlgren, S. Welin-Klintstrom, T. Arnebrant, A. Askendal, H. Elwing, Colloids Surf., B 1995, 4, 23.
[83] L. Bacakova, V. Mares, M. G. Bottone, C. Pellicciari, V. Lisa, V. Svorcık, J. Biomed. Mater. Res. 2000, 49, 369.
[84] L. Bacakova, V. Mares, V. Lisa, V. Svorcik, Biomaterials 2000, 21, 1173.
[85] H. Elwing, S. Welin, A. Askendal, U. Nilsson, I. Lundstrom, J. Colloid Interface Sci. 1987, 119, 203.
[86] C. G. Golander, K. Caldwell, Y.-S. Lin, Colloids Surf. 1989, 42, 165.
[87] W. G. Pitt, J. Colloid Interface Sci. 1989, 133, 223.
[88] J. H. Lee, H. G. Kim, G. S. Khang, H. B. Lee, M. S. Jhon, J. Colloid Interface Sci. 1992, 151, 563.
[89] Y. S. Lin, V. Hlady, Colloids Surf., B 1995, 4, 65.
[90] H. T. Spijker, R. Bos, W. v. Oeveren, J. d. Vries, H. J. Busscher, Colloids Surf., B 1999, 15, 89.
[91] L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm, I. Luzinov, S. Minko, Langmuir 2004, 20, 9916.
[92] N. Ballav, A. Shaporenko, A. Terfort, M. Zharnikov, Adv. Mater. 2007, 19, 998.
[93] J. M. Schakenraad, J. Arends, H. J. Busscher, F. Dijk, P. B. v. Wachem, C. R. H. Wildevuur, Biomaterials 1989, 10.
[94] G. Altankov, T. Groth, N. Krasteva, W. Albrecht, D. Paul, J. Biomater. Sci.-Polym. Ed. 1997, 8.
[95] C. H. Thomas, C. D. McFarland, M. L. Jenkins, A. Rezania, J. G. Steele, K. E. Healy, J. Biomed. Mater. Res. 1997, 37, 81.
[96] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, 1960.
[97] A. Picard, G. Turban, B. Grolleau, J. Phys. D: Appl. Phys 1986, 19, 991.
[98] H. Fogler, Elements of Chemical Reaction Engineering, 3rd ed., Prentice-Hall, New Jersey, 1999.
[99] A. D. Polyanin, A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC, Florida, 2007.
[100] A. D. Polyanin, A. I. Zhurov, A. V. Vyaz'min, Theor. Found. Chem. Eng. 2000, 34, 403.
[101] J. Crank, The Mathematics of Diffusion, Oxford University Press, USA, 1980.
[102] A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546
[103] H. Yasuda, Plasma Polymerization, Academic Press, New York, 1985.
[104] A. I. Skoulidas, D. S. Sholl, J. Phys. Chem. B 2002, 106, 5058.
[105] D. Paschek, R. Krishna, Chem. Phys. Lett. 2001, 148.
[106] D. T. Hayhurst, A. R. Paravar, Zeolites 1988, 8, 27.

QR CODE